Telecommunication Systems

, Volume 65, Issue 2, pp 269–279 | Cite as

Design of different planar geometries of antenna arrays for isoflux radiation in GEO satellites

  • Alberto Reyna
  • Marco A. Panduro
  • Carlos del Rio-Bocio
  • Aldo L. Méndez
Article
  • 173 Downloads

Abstract

The synthesis of different planar geometries of antenna arrays for isoflux radiation is presented in this paper. This synthesis considers the reduction of the side lobe level and the isoflux radiation requirements for Geostationary Earth Orbit satellites. The behavior of the radiation is studied in three geometries of two-dimensional antenna arrays such as uniform planar arrays, aperiodic planar arrays (APA) and concentric ring arrays (CRA). The well-known methods of genetic algorithm and particle swarm optimization are utilized for the optimization problem. In this way, the designs of APA and CRA presented in this paper could provide an acceptable solution for reducing the antenna hardware and simplifying the power feeding even more than results presented previously in the literature.

Keywords

Planar antenna array Isoflux radiation GEO satellites Genetic algorithm Particle swarm optimization 

References

  1. 1.
    Stutzman, W. L., & Thiele, G. A. (1998). Antenna theory and design (2nd ed.). New York: Wiley.Google Scholar
  2. 2.
    Gavish, B. (1997). LEO/MEO systems—global mobile communication systems. Telecommunication Systems, 8, 99–141.CrossRefGoogle Scholar
  3. 3.
    Gavish, B., & Kalvenes, J. (1997). The impact of intersatellite communication links on LEOS performance. Telecommunication Systems, 8, 159–190.CrossRefGoogle Scholar
  4. 4.
    McMahon, G., Sugden, G., & Septiawan, R. (2003). Class dependent traffic allocation in a LEO satellite network. Telecommunication Systems, 22, 241–266.CrossRefGoogle Scholar
  5. 5.
    Russo, P., d’Ippolito, A., Ferrarotti, A., & Ruggieri, M. (1997). A C/I advantageous satellite system configuration for land mobile applications. Telecommunication Systems, 8, 319–340.CrossRefGoogle Scholar
  6. 6.
    Sandau, R., Roeser, H.-P., & Valenzuela, A. (2010). Small satellite missions for earth observation: New developments and trends. Berlin: Springer.CrossRefGoogle Scholar
  7. 7.
    Hay, S. G., Bateman, D. G., Bird, T. S., & Cooray, F. R. (1999). Simple Ka band Earth coverage antennas for LEO satellites. IEEE Antennas and Propagation Symposium, 1, 708–711.Google Scholar
  8. 8.
    Ravanelli, R., Iannicelli, C., Baldecchi, N., & Franchini, F. Multi-objective optimization of an isoflux antenna for LEO satellite down-handling link. Sentinel GMES ESA program.Google Scholar
  9. 9.
    Jin, J., Wang, H. L., Zhu, W. M., & Liu, Y. Z. (2006). Array patterns synthesizing using genetic algorithm. Progress In Electromagnetics Research Symposium, 2, 64–68.Google Scholar
  10. 10.
    Aerts, W., & Vandenbosch, G. A. E. (2004). Optimal inter-element spacing in linear array antennas and its application in satellite communications. In: Proceedings of the 34th European microwave conference.Google Scholar
  11. 11.
    Koleck, T. (2003). Active antenna coverage synthesis for GEO satellite using genetic algorithm. Antennas and Propagation Society International Symposium, 1, 142–144.Google Scholar
  12. 12.
    Morabito, A. F., Lagana, A. R., & Isernia, T. (2010). On the optimal synthesis of ring symmetric shaped patterns by means of uniformly spaced planar arrays. Progress In Electromagnetics Research B, 20, 33–48.CrossRefGoogle Scholar
  13. 13.
    Vigano, M. C., Toso, G., Angeletti, P., Lager, I. E., Yarovoy, A., & Caratelli, D. (2010). Sparse antenna array for earth coverage satellite applications. In: Proceedings of the Fourth European Conference on Antennas and Propagation.Google Scholar
  14. 14.
    Unz, H. (1960). Linear arrays with arbitrarily distributed elements. IEEE Transactions on Antennas and Propagation, 8(2), 222–223.CrossRefGoogle Scholar
  15. 15.
    Chen, K., Yun, X., He, Z., & Han, C. (2007). Synthesis of sparse planar arrays using modified real genetic algorithm. IEEE Trans on Antennas and Propagation, 55, 1067–1073.CrossRefGoogle Scholar
  16. 16.
    Wang, Q., Yao, M., & You, H. (2008). Application of genetic algorithm optimization in the low profile phased array antenna for satellite communication on the move. In: Proceedings of the Second International symposium on the intelligent information technology application, (pp. 649–652).Google Scholar
  17. 17.
    Son, S. H., Park, U. H., Jeon, S. I., & Kim, C. J. (2004). Low sidelobe design by position perturbation in mobile array antenna for satellite communications. Vehicular Technology Conference, 1(13), 10.Google Scholar
  18. 18.
    Maffett, A. L. (1962). Array factors with nonuniform spacing parameter. IRE Transactions on Antennas and Propagation, 10, 131–136.CrossRefGoogle Scholar
  19. 19.
    Reyna, A., Panduro, M. A., & del Rio-Bocio, C. (2012). Design of aperiodic planar arrays for isoflux radiation in GEO satellites by applying evolutionary optimization. Expert Systems with Applications, 39(8), 6872–6878.Google Scholar
  20. 20.
    Harrington, R. (1961). Sidelobe reduction by nonuniform element spacing. IEEE Transactions on Antennas and Propagation, 9, 187–192.CrossRefGoogle Scholar
  21. 21.
    Reyna, Alberto, Panduro, Marco A., & del Rio, Carlos. (2011). Design of concentric ring antenna arrays for isoflux radiation in GEO satellites. IEICE Electronics Express, 8(7), 484–490.CrossRefGoogle Scholar
  22. 22.
    Mandal, D., Ghoshal, S. P., & Bhattacharjee, A. K. (2011). Optimized radii and excitations with concentric circular antenna array for maximum sidelobe level reduction using wavelet mutation based particle swarm optimization techniques. Telecommunication Systems, 47, 1–11, 2011, doi: 10.1007/s11235-011-9482-8.
  23. 23.
    Biller, L., & Friedman, G. (1973). Optimization of radiation patterns for an array of concentric ring sources. IEEE Transactions Audio Electroacoustic, 21(1), 57–61.CrossRefGoogle Scholar
  24. 24.
    Haupt, Randy L. (2008). Optimized element spacing for low sidelobe concentric ring arrays. IEEE Transactions on Antenna and Propagation, 56(1), 266–268.CrossRefGoogle Scholar
  25. 25.
    Bulatsyk, O. O., Katsenelenbaum, B. Z., Yu Topolyuk, P., & Voitovich, N. N. (2010). Phase optimization problems: Applications in wave field theory. Weinheim: Wiley.CrossRefGoogle Scholar
  26. 26.
    Rahmat-Samii, Y., & Michielssen, E. (1999). Electromagnetic optimisation by genetic algorithms. New York: Wiley.Google Scholar
  27. 27.
    Robinson, J., & Rahmat-Samii, Y. (2004). Particle swarm optimization in electromagnetics. IEEE Transactions on Antennas and Propagation, 52, 397–407.CrossRefGoogle Scholar
  28. 28.
    Haupt, R. L. (1993). Thinned arrays using genetic algorithms. IEEE Transactions on Antennas and Propagation, 41(2), 993–999.CrossRefGoogle Scholar
  29. 29.
    Sherman, K. N. (2002). Phased array shaped multi-beam optimization for LEO satellite communications using a genetic algorithm. In: Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology.Google Scholar
  30. 30.
    Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: Developments, applications and resources. In: Proceedings Congress Evolutionary Computation, (pp. 81–86).Google Scholar
  31. 31.
    Reyna, A., & Panduro, M. A. (2008). Optimization of a scannable pattern for uniform planar antenna arrays to minimize the side lobe level. Journals of Electromagnetics Waves and Applications, 22(16), 2241–2250.CrossRefGoogle Scholar
  32. 32.
    Reyna, A., & Panduro, M. A. (2010). Design of steerable concentric rings array using rotation properties and evolutionary optimization. In: Proceedings of the Fourth European Conference on Antennas and Propagation.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alberto Reyna
    • 1
  • Marco A. Panduro
    • 2
  • Carlos del Rio-Bocio
    • 3
  • Aldo L. Méndez
    • 1
  1. 1.Unidad Académica Multidisciplinaria Reynosa-Rodhe, Universidad Autónoma de Tamaulipas (UAT) Carretera Reynosa-San FernandoReynosaMexico
  2. 2.CICESE Research Center, Electronics and Telecommunications DepartmentEnsenadaMexico
  3. 3.Universidad Pública de NavarraPamplonaSpain

Personalised recommendations