Telecommunication Systems

, Volume 65, Issue 1, pp 169–179 | Cite as

Evaluation of mixed permutation codes in PLC channels, using Hamming distance profile

  • Kehinde Ogunyanda
  • Ayokunle D. Familua
  • Theo G. Swart
  • Hendrik C. Ferreira
  • Ling Cheng
Article
  • 131 Downloads

Abstract

We report a new concept involving an adaptive mixture of different sets of permutation codes (PC) in a single DPSK–OFDM modulation scheme. Since this scheme is robust and the algorithms involved are simple, it is a good candidate for implementation for OFDM-based power line communication (PLC) systems. By using a special and easy concept called Hamming distance profile, as a comparison tool, we are able to showcase the strength of the new PC scheme over other schemes reported in literature, in handling the incessant noise types associated with PLC channels. This prediction tool is also useful for selecting an efficient PC codebook out of a number of similar ones.

Keywords

Channel coding Digital modulation G3-PLC Hybrid permutation coding OFDM Power line communications 

Notes

Acknowledgments

This work is based on research supported in part by the National Research Foundation of South Africa (UID 77596)

References

  1. 1.
    Ferreira, H. C., Grové, H. M., Hooijen, O., & Vinck, A. J. H. (2001). Power line communication. Wiley Encyclopedia of Electrical and Electronics Engineering.Google Scholar
  2. 2.
    Papilaya, V. N., Shongwe, T., Vinck, A. J. H., & Ferreira, H. C. (2012). Selected subcarriers QPSK-OFDM transmission schemes to combat frequency disturbances. IEEE International Symposium on Power Line Communications and Its Application (pp. 200–205).Google Scholar
  3. 3.
    Vinck, A. J. H., & Häring, J. (2000). Coding and modulation for power-line communications, IEEE International Symposium on Power Line Communications and Its Application (pp. 265–271).Google Scholar
  4. 4.
    CENELEC (1992). 50065 part 1: Signalling on low voltage electrical installations in the frequency range 3 kHz to 148.5 kHz, general requirments, frequency bands and electromagnetic disturbances.Google Scholar
  5. 5.
    CENELEC (2008). PRIME Technology, whitepaper: PHY, MAC and Convergence layers, (21st Ed.).Google Scholar
  6. 6.
    eRDF (2013). PLC G3 Physical Layer Specification.Google Scholar
  7. 7.
    Juwono, F. H., Guo, Q., Huang, D., & Wong, K. P. (2014). Deep clipping for impulsive noise mitigation in OFDM-based power-line communications. IEEE Transactions on Power Delivery, 29(3), 1335–1343.CrossRefGoogle Scholar
  8. 8.
    Juwono, F. H., Guo, Q., Huang, D., & Wong, K. P (2013). Joint peak amplitude and impulsive noise clippings in OFDM-based power line communications. Asia-Pacific Conference on Communications (pp. 567–571).Google Scholar
  9. 9.
    Al-Mawali, K. S., & Hussain, Z. M. (2009). Adaptive-threshold clipping for impulsive noise reduction in OFDM-based power line communications. International Conference on Advanced Technologies for Communications (pp. 43–48).Google Scholar
  10. 10.
    Salehi, V., Mohamed, A., Mazloomzadeh, A., & Mohammed, O. A. (2012). Laboratory-based smart power system, part II: Control, monitoring, and protection. IEEE Transactions on Smart Grid, 3(3), 1405–1417.CrossRefGoogle Scholar
  11. 11.
    Zhang, P., Li, F., & Bhatt, N. (2010). Next-generation monitoring, analysis, and control for the future smart control center. IEEE Transactions on Smart Grid, 1(2), 186–192.CrossRefGoogle Scholar
  12. 12.
    Cheng, L., & Ferreira, H. C. (2012). Time-diversity permutation coding scheme for narrow-band power-line channels. In IEEE International Symposium on Power Line Communications and Its Application (pp. 120–125).Google Scholar
  13. 13.
    Cheng, L., Swart, T. G, & Ferreira, H. C. Adaptive rateless permutation coding scheme for OFDM-based PLC. (2013). In IEEE International Symposium on Power Line Communications and Its Application (pp. 242–246).Google Scholar
  14. 14.
    Swart, T. G., & Ferreira, H. C. (2007). Decoding distance-preserving permutation codes for power-line communications. In IEEE AFRICON (pp. 1–7).Google Scholar
  15. 15.
    Ferreira, H. C., Vinck, A. J. H., Swart, T. G., & de Beer, I. (2005). Permutation trellis codes. IEEE Transactions on Communications, 53(11), 1782–1789.CrossRefGoogle Scholar
  16. 16.
    Dukes, P. J. (2012). Coding with injections. Designs, Codes and Cryptography, 65(3), 213–222.CrossRefGoogle Scholar
  17. 17.
    Huczynska, S., & Mullen, G. L. (2006). Frequency permutation arrays. Journal of Combinatorial Designs, 14(6), 463–478.CrossRefGoogle Scholar
  18. 18.
    Hunt, F. H., Perkins, S., & Smith, D. H. (2015). Decoding mixed errors and erasures in permutation codes. Designs, Codes and Cryptography, 74(2), 481–493.CrossRefGoogle Scholar
  19. 19.
    Bailey, R. F. (2009). Error-correcting codes from permutation groups. Discrete Mathematics, 309(13), 4253–4265.CrossRefGoogle Scholar
  20. 20.
    Chee, Y. M., Kiah, H. M., Purkayastha, P., & Wang, C. (2012). Importance of symbol equity in coded modulation for power line communications. IEEE International Symposium on Information Theory (pp. 661–665).Google Scholar
  21. 21.
    Ogunyanda, K., Familua, A. D., Swart, T. G., Ferreira, H. C., & Cheng, L. (2014). Permutation coding with differential quinary phase shift keying for power line communication. IEEE PES Innovative Smart Grid Technology European Conference (pp. 1–6).Google Scholar
  22. 22.
    Barta, J., Montemanni, R., & Smith, D. H. (2014). A branch and bound approach to permutation codes. IEEE International Conference on Infromation and Communication Technology (pp. 187–192).Google Scholar
  23. 23.
    Vinck, A. J. H. (2000). Coded modulation for power line communications. AEU International Journal of Electronics and Communications, 54(1), 45–49.Google Scholar
  24. 24.
    Deza, M., & Vanstone, S. A. (1978). Bounds for permutation arrays. Journal of Statistical Planning and Inference, 2(2), 197–209.CrossRefGoogle Scholar
  25. 25.
    Wadayama, T., & Hagiwara, M. (2012). LP-decodable permutation codes based on linearly constrained permutation matrices. IEEE Transactions on Information Theory, 58(8), 5454–5470.CrossRefGoogle Scholar
  26. 26.
    Kong, J., & Hagiwara, M. (2012). Comparing Euclidean, Kendall tau metrics toward extending LP decoding. IEEE International Symposium on Information Theory and its Applications (pp. 91–95).Google Scholar
  27. 27.
    Klove, T., Lin, T. T., Tsai, S. C., & Tzeng, W. G. (2010). Permutation arrays under the Chebyshev distance. IEEE Transactions on Information Theory, 56(6), 2611–2617.CrossRefGoogle Scholar
  28. 28.
    Gologlu, F., Lember, J., Riet, A. E., & Skachek, V. (2015). New bounds for permutation codes in Ulam metric. IEEE International Symposium on Information Theory and its Applications (pp. 1726–1730).Google Scholar
  29. 29.
    Swart, T. G. (2006). Distance-preserving mappings and trellis codes with permutation sequences. Ph.D. dissertation, University of Johannesburg, Johannesburg.Google Scholar
  30. 30.
    Swart, T. G., de Beer, I., & Ferreira, H. C. (2005). On the distance optimality of permutation mappings. IEEE International Symposium on Information Theory (pp. 1068–1072).Google Scholar
  31. 31.
    Sklar, B., & Grant, P. M. (1988). Digital communications: Fundamentals and applications. Englewood Cliffs: Prentice Hall.Google Scholar
  32. 32.
    Alexandre, G. A., Guido, M., & Sergio, B. (2001). A new approach to the construction of high-rate convolutional codes. IEEE Communications Letters, 5(11), 453–455.CrossRefGoogle Scholar
  33. 33.
    Ucha-Filho, B. F., Souza, R. D., Pimentel, C., & Jar, M. (2006). Further results on convolutional codes based on a minimal trellis complexity measure. IEEE International Telecommunications Symposium (pp. 123–128).Google Scholar
  34. 34.
    Bian, Y., Popplewell, A., & O’Reilly, J. J. (1994). New very high rate punctured convolutional codes. Electronics Letters, 30(14), 1119–1120.CrossRefGoogle Scholar
  35. 35.
    Viterbi, A. J. (1971). Convolutional codes and their performance in communication systems. IEEE Transactions on Communications Technology, 19(5), 751–772.CrossRefGoogle Scholar
  36. 36.
    Guftaar, A. S. S. (2007). Computation of the distance spectrum of convolutional codes and the delay spectrum of a network. Semester Project, Jacobs University Bremen, Bremen.Google Scholar
  37. 37.
    Bellare, M. (1997). A note on negligible functions. Technical Report CS97-529. San Diego: University of California.Google Scholar
  38. 38.
    MathWiki (2015). The negligible, the noticeable and the overwhelming. http://mathwiki.cs.ut.ee/asymptotics/06_the_negligible_the_noticeable_/and_the_overwhelming
  39. 39.
    Courant, J., Daubignard, M., Ene, C., Lafourcade, P., & Lakhnech, Y. (2011). Automated proofs for asymmetric encryption. Journal of Automated Reasoning on Computer Security, 46(3–4), 261–291.CrossRefGoogle Scholar
  40. 40.
    Katz, J., & Lindell, Y. (2007). Introduction to modern cryptography: Principles and protocols. illustrated (Ed.). Taylor & Francis.Google Scholar
  41. 41.
    Riegelman, R. (2004). Studying a study and testing a test: How to read the medical evidence (5th ed.). Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
  42. 42.
    Concept Stew. (2015). Statistics for the terrified: The importance of n (sample size) in statistics. http://www.conceptstew.co.uk/PAGES/nsamplesize.html
  43. 43.
    Johnson, R., & Kuby, P. (2011). Elementary statistics, student (Ed.). Cengage Learning.Google Scholar
  44. 44.
    Ogunyanda, K., Familua, A. D., Swart, T. G., Ferreira, H. C., & Cheng, L. (2014). Adaptive permutation coded differential OFDM system for power line communications. IEEE International Conference on Adaptive Science & Technology (pp. 1–7).Google Scholar
  45. 45.
    Ogunyanda, K., Familua, A. D., Swart, T. G., Ferreira, H. C., & Cheng, L. (2014). Evaluation and implementation of cyclic permutation coding for power line communications. IEEE International Conference on Adaptive Science & Technology (pp. 1–7).Google Scholar
  46. 46.
    Oh, M., & Sweeney, P. (1999). Low complexity soft-decision sequential decoding using hybrid permutation for Reed-Solomon codes. IMA International Conference on Cryptography and Coding (pp. 163–172).Google Scholar
  47. 47.
    Singh, A. (2010). A hybrid permutation-coded evolutionary algorithm for the early/tardy scheduling problem. Asia-Pacific Journal of Operational Research, 27(6), 713–725.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kehinde Ogunyanda
    • 1
  • Ayokunle D. Familua
    • 2
  • Theo G. Swart
    • 1
  • Hendrik C. Ferreira
    • 1
  • Ling Cheng
    • 2
  1. 1.Department of Electrical and Electronic Engineering ScienceUniversity of JohannesburgAuckland ParkSouth Africa
  2. 2.School of Electrical and Information EngineeringUniversity of the Witwatersrand, WITSJohannesburgSouth Africa

Personalised recommendations