Telecommunication Systems

, Volume 65, Issue 2, pp 229–240 | Cite as

EIAS-CP: new efficient identity-based authentication scheme with conditional privacy-preserving for VANETs

  • Yong Xie
  • LiBing Wu
  • Jian Shen
  • Abdulhameed Alelaiwi


In VANETs, vehicles broadcast traffic-related messages periodically according to Dedicated Short Range Communication protocol. To ensure the reliability and integrity of messages, authentication schemes are involved in VANETs. As traffic-related messages are time-sensitive, they must be verified and processed timely, or it may cause inestimable harm to the traffic system. However, the OBUs and the RSUs are limited in computation ability and cannot afford vast messages’ verification. Recently, some identity-based authentication schemes using bilinear pairing have been proposed to improve the efficiency of message verification for VANETs. Nevertheless, the bilinear pairing is not suited for VANETs due to its complex operations. The design of an efficient and secure authentication scheme with low computation cost for VANETs still is a rewarding challenge. To settle this challenge, a new efficient identity-based authentication scheme is proposed in this paper. The proposed scheme ensures reliability and integrity of messages and provides conditional privacy-preserving. Compared with the most recent proposed authentication schemes for VANETs, the computation costs of the message signing and verification in the proposed scheme reduce by 88 and 93 % respectively, while security analysis demonstrates that our proposed scheme satisfies all security and privacy requirements for VANETs.


VANETs Authentication cost Conditional privacy-preserving Elliptic curve cryptosystem 



The authors extend their appreciation to the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia for funding this work through the research group project No RGP-VPP-318.


  1. 1.
    Kakkasageri, M. S., & Manvi, S. S. (2014). Information management in vehicular ad hoc networks: A review. Journal of Network and Computer Applications, 39, 334–350.CrossRefGoogle Scholar
  2. 2.
    Bitam, S., Mellouk, A., & Zeadally, S. (2015). VANET-cloud: a generic cloud computing model for vehicular Ad Hoc networks. IEEE Wireless Communications, 22(1), 96–102.CrossRefGoogle Scholar
  3. 3.
    Bayat, M., Barmshoory, M., Rahimi, M., & Aref, M. R. (2015). A secure authentication scheme for VANETs with batch verification. Wireless Networks, 21(5), 1733–1743.CrossRefGoogle Scholar
  4. 4.
    Li, J., Lu, H., & Guizani, M. (2015). ACPN: a novel authentication framework with conditional privacy-preservation and non-repudiation for VANETs. IEEE Transactions on Parallel and Distributed Systems, 26(4), 938–948.CrossRefGoogle Scholar
  5. 5.
    Zhang, C., Ho, P. H., & Tapolcai, J. (2011). On batch verification with group testing for vehicular communications. Wireless Networks, 17(8), 1851–1865.CrossRefGoogle Scholar
  6. 6.
    Zhu, H., Lin, X., Lu, R., Ho, P. H., & Shen, X. (2008). AEMA: An aggregated emergency message authentication scheme for enhancing the security of vehicular ad hoc networks. In 2008 IEEE International Conference on Communications (pp. 1436–1440).Google Scholar
  7. 7.
    Tsai, J. L., & Lo, N. W. (2015). A privacy-aware authentication scheme for distributed mobile cloud computing services. IEEE Systems Journal, 9(3), 805–815.CrossRefGoogle Scholar
  8. 8.
    Jiang, Q., Khan, M. K., Lu, X., Ma, J., & He, D. (2016). A privacy preserving three-factor authentication protocol for e-Health clouds. The Journal of Supercomputing, 1-24.Google Scholar
  9. 9.
    Raya, M., & Hubaux, J. P. (2007). Securing vehicular ad hoc networks. Journal of Computer Security, 15(1), 39–68.CrossRefGoogle Scholar
  10. 10.
    Freudiger, J., Raya, M., Félegyházi, M., & Papadimitratos, P. (2007). Mix-zones for location privacy in vehicular networks.Google Scholar
  11. 11.
    Lu, R., Lin, X., Zhu, H., Ho, P. H., & Shen, X. (2008). ECPP: Efficient conditional privacy preservation protocol for secure vehicular communications. In The 27th conference on computer communications (INFOCOM 2008).Google Scholar
  12. 12.
    Zhang, C., Lin, X., Lu, R., & Ho, P. H. (2008, May). RAISE: an efficient RSU-aided message authentication scheme in vehicular communication networks. In 2008 IEEE international conference on communications (pp. 1451–1457).Google Scholar
  13. 13.
    Shamir, A. (1984). Identity-based cryptosystems and signature schemes. In Proceedings of CRYPTO’ (Vol. 84).Google Scholar
  14. 14.
    Zhang, C., Lu, R., Lin, X., Ho, P. H., & Shen, X. (2008). An efficient identity-based batch verification scheme for vehicular sensor networks. In The 27th conference on computer communications (INFOCOM 2008).Google Scholar
  15. 15.
    Shim, K. A. (2012). An efficient conditional privacy-preserving authentication scheme for vehicular sensor networks. IEEE Transactions on Vehicular Technology, 61(4), 1874–1883.CrossRefGoogle Scholar
  16. 16.
    Lee, C. C., & Lai, Y. M. (2013). Toward a secure batch verification with group testing for VANET. Wireless Networks, 19(6), 1441–1449.CrossRefGoogle Scholar
  17. 17.
    Chim, T. W., Yiu, S. M., Hui, L. C., & Li, V. O. (2011). SPECS: Secure and privacy enhancing communications schemes for VANETs. Ad Hoc Networks, 9(2), 189–203.CrossRefGoogle Scholar
  18. 18.
    Horng, S. J., Tzeng, S. F., Pan, Y., Fan, P., Wang, X., Li, T., et al. (2013). b-SPECS+: Batch verification for secure pseudonymous authentication in VANET. IEEE Transactions on Information Forensics and Security, 8(11), 1860–1875.CrossRefGoogle Scholar
  19. 19.
    Huang, J. L., Yeh, L. Y., & Chien, H. Y. (2011). ABAKA: An anonymous batch authenticated and key agreement scheme for value-added services in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 60(1), 248–262.CrossRefGoogle Scholar
  20. 20.
    Liu, J. K., Yuen, T. H., Au, M. H., & Susilo, W. (2014). Improvements on an authentication scheme for vehicular sensor networks. Expert Systems with Applications, 41(5), 2559–2564.CrossRefGoogle Scholar
  21. 21.
    Jianhong, Z., Min, X., & Liying, L. (2014). On the security of a secure batch verification with group testing for VANET. International Journal of Network Security, 16(5), 351–358.Google Scholar
  22. 22.
    Freeman, D., Scott, M., & Teske, E. (2010). A taxonomy of pairing-friendly elliptic curves. Journal of Cryptology, 23(2), 224–280.CrossRefGoogle Scholar
  23. 23.
    Miller, V. S. (1985). Use of elliptic curves in cryptography. In Proceedings of CRYPTO’85 (pp. 417-426).Google Scholar
  24. 24.
    Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of computation, 48(177), 203–209.CrossRefGoogle Scholar
  25. 25.
    Hankerson, D., Menezes, A. J., & Vanstone, S. (2006). Guide to elliptic curve cryptography. New York: Springer.Google Scholar
  26. 26.
    Chen, J., Mamun, M. S. I., & Miyaji, A. (2015). An efficient batch verification system and its effect in a real time VANET environment. Security and Communication Networks, 8(2), 298–310.Google Scholar
  27. 27.
    Pointcheval, D., & Stern, J. (1996). Security proofs for signature schemes. In Proceedings of EUROCRYPT’96 (pp. 387–398).Google Scholar
  28. 28.
    MIRACL library on
  29. 29.
    Jiang, Q., Wei, F., Fu, S., Ma, J., Li, G., & Alelaiwi, A. (2016). Robust extended chaotic maps-based three-factor authentication scheme preserving biometric template privacy. Nonlinear Dynamics, 83(4), 2085–2101.CrossRefGoogle Scholar
  30. 30.
    He, D., Kumar, N., Wang, H., Wang, L., Choo K., Vinel A., A provably-secure cross-domainhandshake scheme with symptoms-matching for mobile healthcare social network. IEEE Transactions on Dependable and Secure Computing. doi: 10.1109/TDSC.2016.2596286.
  31. 31.
    Alizadeh, M., Zamani, M., Baharun, S., Manaf, A. A., Sakurai, K., Anada, H., et al. (2015). Cryptanalysis and improvement of a secure password authentication mechanism for seamless handover in proxy mobile IPv6 networks. PloS One, 10(11), e0142716.CrossRefGoogle Scholar
  32. 32.
    He, D., Kumar, N., Shen, H., & Lee, J. H. (2015). One-to-many authentication for access control in mobile pay-TV systems. Science China Information Sciences, 1–14. doi: 10.1007/s11432-015-5469-5.
  33. 33.
    Jiang, Q., Ma, J., Lu, X., & Tian, Y. (2015). An efficient two-factor user authentication scheme with unlinkability for wireless sensor networks. Peer-to-Peer Networking and Applications, 8(6), 1070–1081.CrossRefGoogle Scholar
  34. 34.
    He, D., Zeadally, S., Kumar, N., & Lee, J. H. (2016). Anonymous authentication for wireless body area networks with provable security. IEEE Systems Journal. doi: 10.1109/JSYST.2016.2544805.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Computer ScienceWuhan UniversityWuhanChina
  2. 2.Jingdezhen Ceramic InstituteJingdezhenChina
  3. 3.School of Computer and SoftwareNanjing University of Information Science and TechnologyNanjingChina
  4. 4.Department of Software Engineering, College of Computer & Information SciencesKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations