Telecommunication Systems

, Volume 65, Issue 2, pp 215–228 | Cite as

An overview of spectrum sensing techniques for cognitive LTE and LTE-A radio systems

  • Emad Hmood Salman
  • Nor Kamariah Noordin
  • Shaiful Jahari Hashim
  • Fazirulhisyam Hashim
  • Chee Kyun Ng


Advanced communication systems, such as long term evolution (LTE) and LTE-advanced (LTE-A) systems, promise to increase the number of users with high-speed data exchange. However, it leads to spectrum scarcity because of the huge size of data exchange with limited spectrum resources. Cognitive radio (CR) technique is considered the best solution for this spectrum scarcity problem. Spectrum sensing (SS), one of the CR techniques is used to detect the spectrum hole of primary user (PU) without interference with PU. In this paper, several SS approaches for LTE and LTE-A systems are investigated in the CR system. These SS approaches are based on two techniques, namely energy detection and cyclostationary feature detection techniques. The first technique includes four approaches of auto-correlation based advanced energy, time domain detection, Welch periodogram and two-stage model algorithms, while the second technique contains two approaches, namely pilot induced cyclostationary and second order cyclostationary algorithms. According to the analysis, the two-stage model and the second order cyclostationary algorithms are better than the other algorithms because they produce accurate results at the expense of system complexity. Hence, in general a good SS algorithms would require some trade-off between complexity and accuracy.


Cognitive radio Energy detection Cyclostationary feature detection LTE 


  1. 1.
    Zukang, S., Papasakellariou, A., Montojo, J., Gerstenberger, D., & Fangli, X. (2012). Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications. IEEE Communications Magazine, 50, 122–130.Google Scholar
  2. 2.
    Kanchi, S., Sandilya, S., Bhosale, D., Pitkar, A., & Gondhalekar, M. (2013). Overview of LTE-A technology. In IEEE global high technology congress on electronics (GHTCE) (pp. 195–200).Google Scholar
  3. 3.
    Taher, M., Singh, M., Ismail, M., Samad, S., & Islam, M. (2013). Reducing the PAPR of OFDM systems by random variable transformation. ETRI Journal, 35, 714–717.CrossRefGoogle Scholar
  4. 4.
    Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-advanced: Next-generation wireless broadband technology [Invited Paper]. IEEE Wireless Communications, 17, 10–22.CrossRefGoogle Scholar
  5. 5.
    Góra, J. (2014). QoS-aware resource management for LTE-Advanced relay-enhanced network. EURASIP Journal on Wireless Communications and Networking, 2014, 1–18.CrossRefGoogle Scholar
  6. 6.
    Axell, E., Leus, G., & Larsson, E. G. (2010). Overview of spectrum sensing for cognitive radio. In 2nd international workshop on cognitive information processing (CIP) (pp. 322–327).Google Scholar
  7. 7.
    Wei, J., Hanwen, C., Trung Thanh, N., Guven, A. B., Yue, W., Yuan, G. et al. (2013). Key issues towards beyond LTE-Advanced systems with cognitive radio. In IEEE 14th workshop on signal processing advances in wireless communications (SPAWC) (pp. 510–514).Google Scholar
  8. 8.
    Junfeng, X., Hu, R. Q., Yi, Q., Lei, G., & Bo, W. (2013). Expanding LTE network spectrum with cognitive radios: From concept to implementation. IEEE Wireless Communications, 20, 12–19.Google Scholar
  9. 9.
    Xinsheng, Z., Zhiyi, G., & Qiang, G. (2010). A cognitive based spectrum sharing scheme for LTE advanced systems. In International congress on ultra modern telecommunications and control systems and workshops (ICUMT) (pp. 965–969).Google Scholar
  10. 10.
    Arunthavanathan, S., Kandeepan, S., & Evans, R. J. (2013) . Spectrum sensing and detection of incumbent-UEs in secondary-LTE based aerial-terrestrial networks for disaster recovery. In IEEE 18th international workshop on computer aided modeling and design of communication links and networks (CAMAD) (pp. 201–206).Google Scholar
  11. 11.
    Harjula, I., & Hekkala, A. (2011). Spectrum sensing in cognitive femto base stations using welch periodogram. In IEEE 22nd international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 2305–2309).Google Scholar
  12. 12.
    Abdelmonem, M. A., Nafie, M., Ismail, M. H., & El-Soudani, S. (2012). Optimized spectrum sensing algorithms for cognitive LTE femtocells. EURASIP Journal on Wireless Communications and Networking, 2012, 1–19.CrossRefGoogle Scholar
  13. 13.
    Alyaoui, N., Kachouri, A., & Samet, M. (2011). The fourth generation 3GPP LTE identification for cognitive radio. In International conference on microelectronics (ICM) (pp. 1–5).Google Scholar
  14. 14.
    Al-Habashna, A., Dobre, O. A., Venkatesan, R., & Popescu, D. C. (2012). Second-order cyclostationarity of mobile WiMAX and LTE OFDM signals and application to spectrum Awareness in Cognitive Radio Systems. IEEE Journal of Selected Topics in Signal Processing, 6, 26–42.CrossRefGoogle Scholar
  15. 15.
    Piro, G., Grieco, L. A., Boggia, G., Capozzi, F., & Camarda, P. (2011). Simulating LTE cellular systems: An open-source framework. IEEE Transactions on Vehicular Technology, 60, 498–513.CrossRefGoogle Scholar
  16. 16.
    Mir, Z. H., & Filali, F. (2014). LTE and IEEE 802.11 p for vehicular networking: A performance evaluation. EURASIP Journal on Wireless Communications and Networking, 2014, 89.CrossRefGoogle Scholar
  17. 17.
    Salman, M. I., Abdulhasan, M. Q., Ng, C. K., Noordin, N. K., Sali, A., & Mohd Ali, B. (2013). Radio resource management for green 3GPP long term evolution cellular networks: Review and trade-offs. IETE Technical Review, 30, 257–269.CrossRefGoogle Scholar
  18. 18.
    Masonta, M. T., Mzyece, M., & Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 15, 1088–1107.CrossRefGoogle Scholar
  19. 19.
    Fragkiadakis, A. G., Tragos, E. Z., & Askoxylakis, I. G. (2013). A survey on security threats and detection techniques in cognitive radio networks. IEEE Communications Surveys & Tutorials, 15, 428–445.CrossRefGoogle Scholar
  20. 20.
    Grondalen, O., Lahteenoja, M., Lehne, P. H., & Mackenzie, R. (2013). Economic evaluation of a cognitive radio based solution for increasing capacity of LTE networks. In Future network and mobile summit (FutureNetworkSummit) (pp. 1–10).Google Scholar
  21. 21.
    Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11, 116–130.CrossRefGoogle Scholar
  22. 22.
    Yarkan, S. (2014). A generic measurement setup for implementation and performance evaluation of spectrum sensing techniques: indoor environments. IEEE Transactions on Instrumentation and Measurement, 64(3), 606–614.CrossRefGoogle Scholar
  23. 23.
    Xuemin, H., Jing, W., Cheng-Xiang, W., & Jianghong, S. (2014). Cognitive radio in 5G: A perspective on energy-spectral efficiency trade-off. IEEE Communications Magazine, 52, 46–53.Google Scholar
  24. 24.
    Chen, K.-C., & Prasad, R. (2009). Cognitive radio networks. New York: Wiley.CrossRefGoogle Scholar
  25. 25.
    Tandra, R., & Sahai, A. (2005). Fundamental limits on detection in low SNR under noise uncertainty. International Conference on Wireless Networks, Communications and Mobile Computing, 1, 464–469.Google Scholar
  26. 26.
    Sonnenschein, A., & Fishman, P. M. (1992). Radiometric detection of spread-spectrum signals in noise of uncertain power. IEEE Transactions on Aerospace and Electronic Systems, 28, 654–660.CrossRefGoogle Scholar
  27. 27.
    Tandra, R., & Sahai, A. (2008). SNR walls for signal detection. IEEE Journal of Selected Topics in Signal Processing, 2, 4–17.CrossRefGoogle Scholar
  28. 28.
    Jouini, W. (2011). Energy detection limits under log-normal approximated noise uncertainty. IEEE Signal Processing Letters, 18, 423–426.CrossRefGoogle Scholar
  29. 29.
    Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50, 2127–2159.CrossRefGoogle Scholar
  30. 30.
    Tkachenko, A., Cabric, D., & Brodersen, R. W. (2007). Cyclostationary feature detector experiments using reconfigurable BEE2. In 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN) (pp. 216–219).Google Scholar
  31. 31.
    Sutton, P. D., Lotze, J., Nolan, K. E., & Doyle, L. E. (2007). Cyclostationary signature detection in multipath rayleigh fading environments. In 2nd international conference on cognitive radio oriented wireless networks and communications, 2007. CrownCom 2007 (pp. 408–413).Google Scholar
  32. 32.
    Proakis John, G., & Manolakis Dimitris, G. (1996). Digital signal processing: Principles, algorithms, and applications. Upper Saddle River, NJ: Pentice Hall.Google Scholar
  33. 33.
    Nair, P. R., Vinod, A. P., & Krishna, A. K. (2011). A fast two-stage detector for spectrum sensing in cognitive radios. In Proceedings of the IEEE VTC San Francisco, September 2011.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Emad Hmood Salman
    • 1
  • Nor Kamariah Noordin
    • 1
    • 2
  • Shaiful Jahari Hashim
    • 1
  • Fazirulhisyam Hashim
    • 1
  • Chee Kyun Ng
    • 1
    • 3
  1. 1.Department of Computer and Communication Systems Engineering, Faculty of EngineeringUniversiti Putra MalaysiaSelangor Darul EhsanMalaysia
  2. 2.Wireless and Photonics Network (WiPNeT) Research CentreUniversiti Putra MalaysiaSelangor Darul EhsanMalaysia
  3. 3.Malaysian Research Institute on AgeingUniversiti Putra MalaysiaSelangor Darul EhsanMalaysia

Personalised recommendations