Advertisement

Telecommunication Systems

, Volume 64, Issue 4, pp 617–637 | Cite as

Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells

  • Mohammed H. AlsharifEmail author
  • Rosdiadee Nordin
Article

Abstract

The exponential increase in mobile data traffic is considered to be a critical driver towards the new era, or 5G, of mobile wireless networks. 5G will require a paradigm shift that includes very high carrier frequency spectra with massive bandwidths, extreme base station densities, and unprecedented numbers of antennas to support the enormous increase in the volume of traffic. This paper discusses several design choices, features, and technical challenges that illustrate potential research topics and challenges for the future generation of mobile networks. This article does not provide a final solution but highlights the most promising lines of research from the recent literature in common directions for the 5G project. The potential physical layer technologies that are considered for future wireless communications include spatial multiplexing using massive multi-user multiple-input multiple-output (MIMO) techniques with millimetre-waves (mm-waves) in small cell geometries. These technologies are discussed in detail along with the areas for future research.

Keywords

5G cellular systems Massive MU-MIMO Millimetre wave Small cell networks C-RAN 5G base station 

Notes

Acknowledgments

This work was supported by the faculty research fund of Sejong University in 2016. We thank the reviewers for the fruitful suggestions, which helped us to improve the quality of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Wu, J., Zhang, Y., Zukerman, M., & Yung, E. (2015). Energy-efficient base stations sleep mode techniques in green cellular networks: A survey. IEEE Communications Surveys & Tutorials, 17(2), 803–826.CrossRefGoogle Scholar
  2. 2.
    Cisco Systems, Inc. (2014). Cisco visual networking index: Global mobile data traffic forecast update, 2013–2018. Retrieved June 30, 2016 from http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
  3. 3.
    Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.CrossRefGoogle Scholar
  4. 4.
    Wang, R., Hu, H., & Yang, X. (2014). Potentials and challenges of C-RAN supporting multi-RATs toward 5G mobile networks. IEEE Access, 2, 1187–1195.CrossRefGoogle Scholar
  5. 5.
    GSMA Intelligence. (2016). Understanding 5G: Perspectives on future technological advancements in mobile, 2014. Retrieved June 30, 2016 from https://gsmaintelligence.com/research/?file=141208-5g.pdf
  6. 6.
    Onoe, S. (2016). Evolution of 5G mobile technology toward 2020 and beyond. In 2016 IEEE International Solid-State Circuits Conference (ISSCC) (pp. 23–28).Google Scholar
  7. 7.
    Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 99, 2016.Google Scholar
  8. 8.
    Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.CrossRefGoogle Scholar
  9. 9.
    Abrol, A., & Jha, R. K. (2016). Power optimization in 5G networks: A step towards GrEEn communication. IEEE Access, 4, 1355–1374.CrossRefGoogle Scholar
  10. 10.
    Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRefGoogle Scholar
  11. 11.
    Akyildiz, I. F., Gutierrez-Estevez, D. M., & Reyes, E. C. (2010). The evolution to 4G cellular systems: LTE-advanced. Physical Communication, 3(4), 217–244.CrossRefGoogle Scholar
  12. 12.
    Hoydis, J., & Debbah, M. (2010). Green, cost-effective, flexible, small cell networks. IEEE Communications Society MMTC, 5, 23–26.Google Scholar
  13. 13.
    Hoydis, J., Kobayashi, M., & Debbah, M. (2011). A cost-and energy-efficient way of meeting the future traffic demands. IEEE Vehicular Technology Magazine, 26, 37–43.CrossRefGoogle Scholar
  14. 14.
    Xu, S., Han, J., & Chen, T. (2012). Enhanced inter-cell interference coordination in heterogeneous networks for LTE-advanced. In \(75^{th}\) IEEE Vehicular Technology Conference (VTC Spring) (pp. 1–5).Google Scholar
  15. 15.
    Lindbom, L., Love, R., Krishnamurthy, S., Yao, C., Miki, N., & Chandrasekhar, V. (2011). Enhanced inter-cell interference coordination for heterogeneous networks in LTE-advanced: A survey. CoRR abs/1112.1344, 2011. arXiv:1112.1344
  16. 16.
    Lee, H., Vahid, S., & Moessner, K. (2014). A survey of radio resource management for spectrum aggregation in LTE-advanced. IEEE Communications Surveys & Tutorials, 16(2), 745–760.CrossRefGoogle Scholar
  17. 17.
    Andrews, J. G., Buzzi, S., Choi, W., Hanly, S., Lozano, A., Soong, A. C., et al. (2014). What will 5G be? IEEE Selected Areas in Communications, 32(6), 1065–1082.CrossRefGoogle Scholar
  18. 18.
    Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRefGoogle Scholar
  19. 19.
    Bogale, T. E., & Le, L. B. (2016). Massive MIMO and mmWave for 5G wireless hetNet: Potential benefits and challenges. IEEE Vehicular Technology Magazine, 11(1), 64–75.CrossRefGoogle Scholar
  20. 20.
    Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRefGoogle Scholar
  21. 21.
    Razavizadeh, S., Ahn, M., & Lee, I. (2014). Three-dimensional beamforming: A new enabling technology for 5G wireless networks. IEEE Signal Processing Magazine, 31(6), 94–101.CrossRefGoogle Scholar
  22. 22.
    Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.CrossRefGoogle Scholar
  23. 23.
    Chou, S.-F., Chiu, T.-C., Yu, Y.-J., & Pang, A.-C. (2014). Mobile small cell deployment for next generation cellular networks. In 2014 IEEE Global Communications Conference (GLOBECOM) (pp. 4852–4857).Google Scholar
  24. 24.
    Ge, X., Tu, S., Mao, G., Wang, C.-X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23, 72–79.CrossRefGoogle Scholar
  25. 25.
    Gotsis, A., Stefanatos, S., & Alexiou, A. (2016). UltraDense networks: The new wireless frontier for enabling 5G access. IEEE Vehicular Technology Magazine, 11, 71–78.CrossRefGoogle Scholar
  26. 26.
    Roh, W. (2014). 5G mobile communications for 2020 and beyond-vision and key enabling technologies. Retrieved June 30, 2016 from http://eucnc.eu/files/keynotes/Roh.pdf
  27. 27.
    Agyapong, P. K., Iwamura, M., Staehle, D., Kiess, W., & Benjebbour, A. (2014). Design considerations for a 5G network architecture. IEEE Communications Magazine, 52(11), 65–75.CrossRefGoogle Scholar
  28. 28.
    Medbo, J., Kyosti, P., Kusume, K., Raschkowski, L., Haneda, K., Jamsa, T., et al. (2016). Radio propagation modeling for 5G mobile and wireless communications. IEEE Communications Magazine, 54, 144–151.CrossRefGoogle Scholar
  29. 29.
    Dehos, C., Domenico, A., & Dussopt, L. (2014). Millimeter-wave access and backhauling: the solution to the exponential data traffic increase in 5G mobile communications systems? IEEE Communications Magazine, 52(9), 88–95.CrossRefGoogle Scholar
  30. 30.
    Weiler, R. J., Peter, M., Keusgen, W., Calvanese-Strinati, E., De Domenico, A., Filippini, I., Capone, A., Siaud, I., Ulmer-Moll, A.-M., & Maltsev, A. (2014). Enabling 5G backhaul and access with millimeter-waves. In European Conference on Networks and Communications(EuCNC) Google Scholar
  31. 31.
    Monserrat, J. F., Mange, G., Braun, V., Tullberg, H., Zimmermann, G., & Bulakci, Ö. (2015). METIS research advances towards the 5G mobile and wireless system definition. EURASIP Journal on Wireless Communications and Networking, 2015, 1–16.CrossRefGoogle Scholar
  32. 32.
    Benn, H. (2016). Vision and key features for 5th generation (5G) cellular. Retrieved June 30, 2016 from http://cambridgewireless.co.uk/Presentation/RadioTech_30.01.14_HowardBenn.Samsung.pdf
  33. 33.
    Sun, S., Rappaport, T. S., Rangan, S., Thomas, T. A., Ghosh, A., Kovacs, I. Z., Rodriguez, I., Koymen, O., Partyka, A., & Jarvelainen, J. (2016). Propagation path loss models for 5G urban microand macro-cellular scenarios. In 83rd IEEE ehicular Technology Conference (VTC2016-S pring) Google Scholar
  34. 34.
    Inomata, M., Yamada, W., Sasaki, M., Mizoguchi, M., Kitao, K., & Imai, T. (2015). Path loss model for the 2 to 37 GHz band in street microcell environments. IEICE Communications Express, 4(5), 149–154.CrossRefGoogle Scholar
  35. 35.
    Sulyman, A. I., Nassar, A., Samimi, M. K., Maccartney, G., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Communications Magazine, 52(9), 78–86.CrossRefGoogle Scholar
  36. 36.
    Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.CrossRefGoogle Scholar
  37. 37.
    Johansson, K., Furuskar, A., Karlsson, P., & Zander, J. (2004). Relation between base station characteristics and cost structure in cellular systems. In \(15^{th}\) IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 2627–2631).Google Scholar
  38. 38.
    Roh, W., Seol, J.-Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.CrossRefGoogle Scholar
  39. 39.
    Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.CrossRefGoogle Scholar
  40. 40.
    Lozano, A., & Tulino, A. M. (2002). Capacity of multiple-transmit multiple-receive antenna architectures. IEEE Transactions on Information Theory, 48(12), 3117–3128.CrossRefGoogle Scholar
  41. 41.
    Panzner, B., Zirwas, W., Dierks, S., Lauridsen, M., Mogensen, P., Pajukoski, K., & Miao, D. (2014). Deployment and implementation strategies for massive MIMO in 5G. In 2014 Globecom Workshops (GC Wkshps) (pp. 346–351).Google Scholar
  42. 42.
    Marzetta, T. L. (2007). ”The case for MANY (greater than 16) antennas as the base station”, in Proc. San Diego, CA, USA: ITA.Google Scholar
  43. 43.
    Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRefGoogle Scholar
  44. 44.
    Chih-Lin, I., Rowell, C., Han, S., Xu, Z., Li, G., & Pan, Z. (2014). Toward green and soft: a 5G perspective. IEEE Communications Magazine, 52(2), 66–73.CrossRefGoogle Scholar
  45. 45.
    Alsharif, M. H., Nordin, R., & Ismail, M. (2014). Classification, recent advances and research challenges in energy efficient cellular networks. Wireless Personal Communications, 77(2), 1249–1269.CrossRefGoogle Scholar
  46. 46.
    Alsharif, M. H., Nordin, R., & Ismail, M. (2013). Survey of Green Radio Communications Networks: Techniques and Recent Advances. Journal of Computer Networks and Communications, 2013, doi: 10.1155/2013/453893.
  47. 47.
    Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., Aggoune, H. M., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.CrossRefGoogle Scholar
  48. 48.
    Liu, W., Han, S., & Yang, C. (2014). Energy efficiency comparison of massive MIMO and small cell network. In 2014 IEEE Global Conference on in Signal and Information Processing (GlobalSIP) (pp. 617–621).Google Scholar
  49. 49.
    Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications, doi: 10.1109/TWC.2015.2414413.
  50. 50.
    Dahman, G., Rusek, F., Zhu, M., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Wireless Communications, 14(7), 3899–3911.CrossRefGoogle Scholar
  51. 51.
    Vieira, J., Malkowsky, S., Nieman, K., Miers, Z., Kundargi, N., Liu, L., Wong, I., Owall, V., Edfors, O., & Tufvesson, F. (2014). A flexible 100-antenna testbed for massive MIMO. In IEEE GLOBECOM 2014 Workshop on Massive MIMO: From theory to practice (pp. 12–08).Google Scholar
  52. 52.
    Truong, K. T., & Heath, R. W. (2013). Effects of channel aging in massive MIMO systems. IEEE/KICS Journal of Communications and Networks, 15, 338–351.CrossRefGoogle Scholar
  53. 53.
    Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10(8), 2640–2651.CrossRefGoogle Scholar
  54. 54.
    Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2009). Pilot contamination problem in multi-cell TDD systems. In IEEE International Symposium on Information Theory (ISIT) (pp. 2184–2188).Google Scholar
  55. 55.
    Elijah, O., Leow, C. Y., Rahman, T. A., Nunoo, S., & Iliya, S. Z. (2016). A comprehensive survey of pilot contamination in massive MIMO-5G system. IEEE Communications Surveys & Tutorials, 18, 905–923.CrossRefGoogle Scholar
  56. 56.
    Jung, M., Kim, Y., Lee, J., & Choi, S. (2013). Optimal number of users in zero-forcing based multiuser MIMO systems with large number of antennas. IEEE Journal of Communications and Networks, 15(4), 362–369.CrossRefGoogle Scholar
  57. 57.
    Zhang, H., Zheng, X., Xu, W., & You, X. (2014). On massive MIMO performance with semi-orthogonal pilot-assisted channel estimation. EURASIP Journal on Wireless Communications and Networking, 2014, 220.CrossRefGoogle Scholar
  58. 58.
    Alnajjar, K. A., Smith, P. J., & Woodward, G. K. (2015). Co-located and distributed antenna systems: deployment options for massive multipleinput-multiple-output. IET Microwaves, Antennas & Propagation, 9(13), 1418–1424.CrossRefGoogle Scholar
  59. 59.
    Liu, A., & Lau, V. K. N. (2012). Joint power and antenna selection optimization for energy-efficient large distributed MIMO networks. In Proceedings of the IEEE Conference on ICCS (pp. 230–234). Singapore.Google Scholar
  60. 60.
    Dai, H. (2006). Distributed versus co-located MIMO systems with correlated fading and shadowing. In Proceedings of the IEEE Conference on ICASSP (pp. 561–564). Toulouse.Google Scholar
  61. 61.
    Clark, M. V., Willis, T., Greenstein, L. J., & (2001). Distributed versus centralized antenna arrays in broadband wireless networks. In Proceedings of the IEEE Conference (pp. 33–37). Rhodes: VTC.Google Scholar
  62. 62.
    Mohammed, S. K., Zaki, A., Chockalingam, A., & Rajan, B. S. (2009). High-rate space-time coded large-MIMO systems: Low-complexity detection and channel estimation. IEEE Journal of Selected Topics in Signal Processing, 3, 958–974.CrossRefGoogle Scholar
  63. 63.
    Mohammed, S. K., Chockalingam, A., & Rajan, S. B. (2008). Low-complexity detection and performance in multi-gigabit high spectral efficiency wireless systems. In Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2008) (pp. 1–5).Google Scholar
  64. 64.
    Zirwas, W. (2015). Opportunistic CoMP for 5G massive MIMO multilayer networks. In Proceedings of 19th International ITG Workshop on Smart Antennas (WSA 2015) (pp. 1–7).Google Scholar
  65. 65.
    Guo, W., Wang, S., Chu, X., Zhang, J., Chen, J., & Song, H. (2013). Automated small-cell deployment for heterogeneous cellular networks. IEEE Communications Magazine, 51(5), 46–53.CrossRefGoogle Scholar
  66. 66.
    Cheng, H. T., Callard, A., Senarath, G., Zhang, H., & Zhu, P. (2012). Step-wise optimal low power node deployment in LTE heterogeneous networks. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–4).Google Scholar
  67. 67.
    Shimodaira, H., Tran, G. K., Sakaguchi, K., Araki, K., Kaneko, S., Miyazaki, N., et al. (2013). Optimization of picocell locations and its parameters in heterogeneous networks with hotspots. IEICE Transactions on Communications, 96(6), 1338–1347.CrossRefGoogle Scholar
  68. 68.
    Chen, C. S., Nguyen, V. M., & Thomas, L. (2012). On small cell network deployment: A comparative study of random and grid topologies. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5).Google Scholar
  69. 69.
    Pak, Y., Min, K., & Choi, S. (2014). Performance evaluation of various small-cell deployment scenarios in small-cell networks. In 18th IEEE International Symposium on Consumer Electronics (ISCE 2014) (pp. 1–2).Google Scholar
  70. 70.
    Coletti, C., Mogensen, P., & Irmer, R. (2011). Deployment of LTE in-band relay and micro base stations in a realistic metropolitan scenario. In 2011 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5).Google Scholar
  71. 71.
    Coletti, C., Hu, L., Huan, N., Kovács, I. Z., Vejlgaard, B., Irmer, R., & Scully, N. (2012). Heterogeneous deployment to meet traffic demand in a realistic LTE urban scenario. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5).Google Scholar
  72. 72.
    Hu, L., Kovács, I. Z., Mogensen, P., Klein, O., & Stormer, W. (2011). Optimal new site deployment algorithm for heterogeneous cellular networks. In 2011 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5).Google Scholar
  73. 73.
    Ngo, D. T., & Le-Ngoc, T. (2014). Architectures of small-cell networks and interference management. http://www.springer.com/gp/book/9783319048215, Berlin: Springer.
  74. 74.
    Wang, H., Pan, Z., & Chih, L. I. (2014). Perspectives on high frequency small cell with ultra dense deployment. In IEEE International Conference on Communications in China (ICCC) (pp. 502–506).Google Scholar
  75. 75.
    Monteiro, P. P., & Gameiro, A. (2014). Hybrid fibre infrastructures for cloud radio access networks. In Proceedings of the 2014 16th International Conference on Transparent Optical Networks (ICTON) Google Scholar
  76. 76.
    Cai, Y., Yu, F. R., & Bu, S. (2016). Dynamic operations of cloud radio access networks (C-RAN) for mobile cloud computing systems. IEEE Transactions on Vehicular Technology, 65(3), 1536–1548.CrossRefGoogle Scholar
  77. 77.
    Wang, N., Hossain, E., & Bhargava, V. K. (2015). Backhauling 5G small cells: A radio resource management perspective. IEEE Wireless Communications, 22(5), 41–49.CrossRefGoogle Scholar
  78. 78.
    Akyildiz, I. F., Wang, P., & Lin, S. (2015). SoftAir: A software defined networking architecture for 5G wireless systems. Computer Networks, 85, 1–18.CrossRefGoogle Scholar
  79. 79.
    Kreutz, D., Ramos, F. M. V., Verissimo, P., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey. IEEE of the Proceedings, 103(1), 14–76.CrossRefGoogle Scholar
  80. 80.
    Xu, J., Wang, J., Zhu, Y., Yang, Y., Zheng, X., Wang, S., et al. (2014). Cooperative distributed optimization for the hyper-dense small cell deployment. IEEE Communications Magazine, 52(5), 61–67.CrossRefGoogle Scholar
  81. 81.
    Quek, T. Q., de la Roche, G., & Güvenç, I. (2013). Small cell networks: Deployment, PHY techniques, and resource management. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  82. 82.
    SpiderCloud Wireless Inc. (2016). Enterprise small cell architectures. Report September 2012, Retrieved from June 30, 2016 from http://www.spidercloud.com/assets/pdfs/WP_EnterpriseSmallCellArch_092512.pdf
  83. 83.
    Chin, W. H., Fan, Z., & Haines, R. (2014). Emerging technologies and research challenges for 5G wireless networks. IEEE Wireless Communications, 21(2), 106–112.CrossRefGoogle Scholar
  84. 84.
    Tavares, F. M., Berardinelli, G., Mahmood, N. H., Sorensen, T. B., & Mogensen, P. (2014). Inter-cell interference management using maximum rank planning in 5G small cell networks. In \(11^{th }\) International Symposium on Wireless Communications Systems (ISWCS) (pp. 628–632).Google Scholar
  85. 85.
    Ruckus Simply better wireless. (2016). Dealing with density: The move to small-cell architectures. White Paper, 2015. Retrieved June 30, 2016 from http://c541678.r78.cf2.rackcdn.com/wp/wp-dealing-with-density.pdf
  86. 86.
    Fehske, A. J., Viering, I., Voigt, J., Sartori, C., Redana, S., & Fettweis, G. (2014). Small-cell self-organizing wireless networks. Proceedings of the IEEE, 102, 334–350.CrossRefGoogle Scholar
  87. 87.
    Vilar, R., Bosshard, O., Magne, F., Lefevre, A., & Marti, J. (2013). Wireless backhaul architecture for small cells deployment exploiting Q-band frequencies. In 2013 Future Network and Mobile Summit (FutureNetworkSummit) (pp. 1–11).Google Scholar
  88. 88.
    Ceragon Solution Brief. (2016). Wireless backhaul solutions for small cells high capacity comes. in small packages. White Paper, 2015. Retrieved June 30, 2016 https://www.ceragon.com/images/Reasource_Center/Solution_Briefs/Ceragon_Solution_Brief_Wireless_Backhaul_Solutions_for_Small_Cells.pdf
  89. 89.
    Jafari, A. H., López-Pérez, D., Song, H., Claussen, H., Ho, L., & Zhang, J. (2015). Small cell backhaul: Challenges and prospective solutions. EURASIP Journal on Wireless Communications and Networking, 2015, 1–18.CrossRefGoogle Scholar
  90. 90.
    Ishii, H., Kishiyama, Y., & Takahashi, H. (2012). A novel architecture for LTE-B: C-plane/U-plane split and phantom cell concept. In 2012 IEEE Globecom Workshops (GC Wkshps) (pp. 624–630).Google Scholar
  91. 91.
    Li, Q. C., Niu, H., Wu, G., & Hu, R. Q. (2013). Anchor-booster based heterogeneous networks with mmWave capable booster cells. In 2013 IEEE Globecom Workshops (GC Wkshps) (pp. 93–98).Google Scholar
  92. 92.
    Musumeci, F., Bellanzon, C., Carapellese, N., Tornatore, M., Pattavina, A., & Gosselin, S. (2016). Optimal BBU placement for 5G C-RAN deployment over WDM aggregation networks. Journal of Lightwave Technology, 34, 1963–1970.CrossRefGoogle Scholar
  93. 93.
    Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Green small-cell networks. IEEE Vehicular Technology Magazine, 6, 37–43.CrossRefGoogle Scholar
  94. 94.
    Ashraf, I., Boccardi, F., & Ho, L. (2011). Sleep mode techniques for small cell deployments. IEEE Communications Magazine, 49(8), 72–79.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical Engineering, College of Electronics and Information EngineeringSejong UniversitySeoulKorea
  2. 2.Department of Electrical, Electronics and Systems Engineering, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations