Abstract
The introduction of dynamic spectrum access (DSA) technologies in mobile markets faces technical, economic and regulatory challenges. This paper defines industry openness and spectrum centralization as the two key factors that affect the adoption of DSA technologies. The adoption process is analyzed employing a comprehensive System Dynamics model that considers the network and substitution effects. Two possible scenarios, namely operator-centric and user-centric adoption of DSA technologies are explored in the model. The analysis indicates that operator-centric DSA technologies may be adopted in most countries where spectrum is centralized, while end-user centric DSA technologies may be adopted in countries with decentralized spectrum regime and in niche emerging services. The study highlights the role of standards-based design and concludes by citing case studies that show the practicality of this analysis and associated policy prescriptions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Operator providing wireless internet access in a local basis, such as described in [2].
This framework has been adopted by the US and the EU as a three tiered framework authorization [18].
For Bass model description and application, see [42].
Critical mass is the “minimum network size that can be sustained in equilibrium” [44].
According to [54], spectrum license is an entry barrier according to Bain’s definition, but not according to Stigler’s definition. Considering that currently spectrum licenses have reselling rights and spectrum regimes are becoming more flexible, this study follows Stigler’s definition. Therefore spectrum licenses is not part of industry openness, but it is considered in a separate variable (spectrum centralization). A similar situation happens with taxi licenses, as explained by Demsetz [55].
Quasi rent is a return of a firm, which is temporal in its nature due to e.g. temporal entry barriers. Appropriable quasi rent arise from a vertical integration or a transaction-specific investment.
Under network effect, the number of adopters increases the value of a new adopter, since there are more connected devices to interact. In DSA, compatibility issues are relevant at both device and network sides.
Low market concentration increases the probability of having spectrum transactions at retail level, since it provides the end-user buying power and increased service offer. If market concentration (and spectrum concentration) is higher, there will be less transactions at retail level (less switching possibilities for end-users), but operators instead may develop a wholesale market, through cooperative or market based mechanisms, if they see it beneficial. Note that under dominant position (i.e. monopoly), the probability of having transactions decreases at both levels.
This exercise models user-centric devices substituting operator-centric devices. However, it may be easily extrapolated to include other scenarios, such as an operator-centric DSA process substituting an older process without DSA.
The value of a network can be described as \(N^{2}\) by Metcalfe’s law or as \(e^{N}\) by Reed’s law.
References
Cisco. (2015). Cisco visual networking index: Global mobile data traffic forecast update, 2014–2019
Markendahl, J., & Casey, T. R. (2012). Business opportunities using white space spectrum and cognitive radio for mobile broadband services. In 2012 7th IEEE international ICST conference on cognitive radio oriented wireless networks and communications (CROWNCOM) (pp. 129–134).
Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio, Doctoral thesis, KTH. Scientific American. 294(3) (pp. 66–73).
Howell, B., Meade, R., & O’Connor, S. (2010). Structural separation versus vertical integration: Lessons for telecommunications from electricity reforms. Telecommunications Policy, 34(2010), 392–403.
Kim, J., Kim, Y., Gaston, N., Lestage, R., Kim, Y., & Flacher, D. (2011). Access regulation and infrastructure investment in the mobile telecommunications industry. Telecommunications Policy, 35(2011), 907–919.
Li, Y., & Lyons, B. (2012). Market structure, regulation and the speed of mobile network penetration. International Journal of Industrial Organization, 30(2012), 697–707.
Freyens, B. P., & Yerokhin, O. (2011). Allocative versus technical spectrum efficiency. Telecommunications Policy, 35(4), 291–300.
Crocioni, P., & Franzoni, L. A. (2011). Transmitters and receivers’ investments to avoid interference: Is there an optimal regime? Telecommunications Policy, 35(6), 568–578.
Caicedo, C. E. & Weiss, M. B. H. (2011). The viability of spectrum trading markets. IEEE Communications Magazine.
Ballon, P., & Delaere, S. (2009). Flexible spectrum and future business models for the mobile industry. Telematics and Informatics, 26(3), 249–258.
Basaure, A., Marianov, V., & Paredes, R. (2014). Implications of dynamic spectrum management for regulation. Telecommunications Policy, 39(7), 563–579.
Rogers, E. M. (2010). Adoption of innovations. New York: Simon and Schuster.
Damanpour, F. (1991). Organizational innovation: A meta-analysis of effects of determinants and moderators. Academy of Management Journal, 34(3), 555–590.
Electronic Communications Committee (ECC). (2009). Light licensing, license-exempt and commons, report 132.
European Commission, EU COM (2012) 478. European economic and social committee, promoting the shared use of radio spectrum resources in the internal market, Brussels.
Holland, O., De Nardis, L., Nolan, K., Medeisis, A., Anker, P., Minervini, L.F., Velez, F., Matinmikko, M., Sydor, J. (2012). Pluralistic licensing. In IEEE international symposium on dynamic spectrum access networks.
Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.
Matinmikko, M., Mustonen, M., Roberson, D., Paavola, J., Höyhtya, M., Yrjola, S., & Roning, J. (2014). Overview and comparison of recent spectrum sharing approaches in regulation and research: From opportunistic unlicensed access towards licensed shared access. In IEEE international symposium on dynamic spectrum access networks (DYSPAN) (pp. 92–102).
Medeisis, A., & Minervini, L. F. (2013). Stalling innovation of cognitive radio: The case for a dedicated frequency band. Telecommunications Policy, 37, 108–115.
Warma, H., Levä, T., Tripp, H., Ford, A., & Kostopoulos, A. (2011). Dynamics of communication protocol diffusion: The case of multipath TCP. NETNOMICS: Economic Research and Electronic Networking, 12(2), 133–159.
Miranda, L., & Lima, C. A. (2013). Technology substitution and innovation adoption: The cases of imaging and mobile communication markets. Technological Forecasting and Social Change, 80(6), 1179–1193.
Kim, M.-S., & Kim, H. (2007). Is there early take-off phenomenon in adoption of IP-based telecommunications services? Omega, 35(2007), 727–739.
Michalakelis, C., Varoutas, D., & Sphicopoulos, T. (2010). Innovation adoption with generation substitution effects. Technological Forecasting & Social Change, 77(2010), 541–557.
Grajek, M., & Kretschmer, T. (2012). Identifying critical mass in the global cellular telephony market. International Journal of Industrial Organization, 30(2012), 496–507.
Xiao, J., Hu, R., Qian, Y., Gong, L., & Wang, B. (2013). Expanding LTE network spectrum with cognitive radios: From concept to implementation. IEEE Wireless Communications, 20(2), 12–19.
Flores, A. B., Guerra, R. E., Knightly, E. W., Ecclesine, P., & Pandey, S. (2013). IEEE 802.11 af: A standard for TV white space spectrum sharing. IEEE Communications Magazine, 51(10), 92–100.
Lei, Z., & Shellhammer, S. J. (2009). IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications Magazine, 47(1), 130–138.
Zhang, Y., Yu, R., Nekovee, M., Liu, Y., Xie, S., & Gjessing, S. (2012). Cognitive machine-to-machine communications: visions and potentials for the smart grid. IEEE Network, 26(3), 6–13.
Manusco, A., Probasco, L., & Patil, B. (2013). Protocol to access white space (PAWS) database: Use cases and requirements. Internet-draft.
Ghosh, S., Naik, G., Kumar, A., & Karandikar, A. (2015, February). OpenPAWS: An open source PAWS and UHF TV white space database implementation for India. In IEEE twenty first national conference on communications (NCC) (pp. 1–6).
Paavola, J., & Kivinen, A. (2014). Device authentication architecture for TV white space systems. In IEEE 9th international conference on cognitive radio oriented wireless networks and communications (CROWNCOM) (pp. 460-465).
Mueck, M. (2014). Standardisation for reconfigurable radio systems: where we are. ETSI workshop on reconfigurable radio systems. Presentation accessed in July 2015. Retrieved December 3 from www.etsi.org
Palola, M., Matinmikko, M., Prokkola, J., Mustonen, M., Heikkila, M., Kippola, T., \(\ldots \), Heiska, K. (2014). Live field trial of Licensed Shared Access (LSA) concept using LTE network in 2.3 GHz band. In IEEE international symposium on dynamic spectrum access networks (DYSPAN) (pp. 38–47).
4G Americas. LTE carrier aggregation: Technology development and deployment worldwide. Retrieved October 2014. Accesses in July 2015 from www.4gamericas.org.
Yuan, G., Zhang, X., Wang, W., & Yang, Y. (2010). Carrier aggregation for LTE-advanced mobile communication systems. IEEE Communications Magazine, 48(2), 88–93.
Alkhansa, R., Artail, H., & Gutierrez-Estevez, D. M. (2014). LTE-WiFi carrier aggregation for future 5G systems: A feasibility study and research challenges. Procedia Computer Science, 34, 133–140.
Lin, X., Andrews, J., Ghosh, A., & Ratasuk, R. (2014). An overview of 3GPP device-to-device proximity services. IEEE Communications Magazine, 52(4), 40–48.
Webb, W. (2012). Weightless: The technology to finally realise the m2m vision. International Journal of Interdisciplinary Telecommunications and Networking (IJITN), 4(2), 30–37.
Sridhar, V., Casey, T., & Hämmäinen, H. (2013). Flexible spectrum management for mobile broadband services: How does it vary across advanced and emerging markets? Telecommunications Policy Special Issue on Cognitive Radio, 37, 178–191.
Shy, Oz. (2004). Economics of network industries. Cambridge: Cambridge University Press.
Jang, S.-L., Dai, S.-C., & Sung, S. (2005). The pattern and externality effect of diffusion of mobile telecommunications: The case of the OECD and Taiwan. Information Economics and Policy, 17(2005), 133–148.
Mahajan, V., Muller, E., & Bass, F. (1993). New-product adoption models. In Handbook in operations research and management science, Chapter 8, Marketing (Vol. 5). Amsterdam: North Holland.
Gurbaxani, V. (1990). Adoption in computing networks: The case of BITNET. Communications of the ACM, 33, 65–75.
Economides, N., & Himmelberg, C. P. (1995). Critical mass and network size with application to the US fax market. NYU Stern School of Business EC-95-11.
Mak, V., & Zwick, R. (2010). Investment decisions and coordination problems in a market with network externalities: An experimental study. Journal of Economic Behavior & Organization, 76(2010), 759–773.
Norton, J. A., & Bass, F. M. (1987). A diffusion theory model of adoption and substitution for successive generations of high-technology products. Management Science, 33(9), 1069–1086.
Modis, T. (2003). A scientific approach to managing competition. The Industrial Physicist, 9(1), 24–27.
Pistorius, C. & Utterback, J. (1996). A Lotka-Volterra model for multi-mode technological interaction: Modeling competition, symbiosis and predator prey modes. Sloan school of management, MIT, WP # 3929.
Kucharavy, D., & De Guio, R. (2011). Application of S-shaped curves. Procedia Engineering, 9, 559–572.
Casey, T., & Töyli, J. (2012). Mobile voice adoption and service competition: A system dynamic analysis of regulatory policy. Telecommunications Policy, 36, 162–174.
Funk, J. L. (2011). Standards, critical mass, and the formation of complex industries: A case study of the mobile Internet. Journal of Engineering and Technology Management, 28(4), 232–248.
Shin, D. H., & Bartolacci, M. (2007). A study of MVNO adoption and market structure in the EU, US, Hong Kong, and Singapore. Telematics and Informatics, 24(2), 86–100.
Stigler, G. J. (1983). The organization of industry. Economics books. Chicago: University of Chicago Press.
Park, Eun-A. (2009). Explicating barriers to entry in the telecommunications industry. Info, 11(1), 34–51. doi:10.1108/14636690910932984.
Demsetz, H. (1982). Barriers to entry. The American Economic Review, 47-57
Suomi, H., Basaure, A., & Hämmäinen, H. (2013). Effects of capacity sharing on mobile access competition. In Proceeding capacity sharing workshop (CSWS’13)
Coase, R. H. (1937). The nature of the firm. Economica, 4(16), 386–405.
Klein, B., Crawford, R. & Alchian, A. (1978) Vertical integration, appropriable rents, and the competitive contracting process. Journal of Law and Economics, 297–321
Klemperer, P. (1995). Competition when consumers have switching costs: An overview with applications to industrial organization, macroeconomics, and international trade. Review of Economic Studies, 62, 515–539.
Beard, T., Ford, G., Spiwak, L., & Stern, M. (2010). A policy framework for spectrum allocation in mobile communications. Federal Communications Law Journal, 62, 630.
Lundborg, M., Reichl, W., & Ruhle, E.-O. (2012). Spectrum allocation and its relevance for competition. Telecommunications Policy, 36(2012), 664–675.
Hazlett, T. W. (2008). Property rights and wireless license values. 51 journal of law & economics 563–98
Freyens, B. P. (2010). Shared or exclusive radio waves? A dilemma gone astray. Telematics and Informatics, 27(3), 293–304.
European Communications Office. (2012). ECO report 03: The licensing of mobile bands in CEPT.
Prasad, R., & Sridhar, V. (2008). Optimal number of mobile service providers in India: Trade-off between efficiency and competition. International Journal of Business Data Communications and Networking, 4(3), 69–81.
Mayo, J., & Wallsten, S. (2010). Enabling efficient wireless communications: The role of secondary spectrum markets. Information Economics and Policy, 22(2010), 61–72.
Telecommunications Regulatory Authority of India (TRAI). (2014a). Recommendations on working guidelines for spectrum trading. Retrieved from http://traui.gov.in. Accessed on 15th July 2014.
Telecommunications Regulatory Authority of India (TRAI). (2014b). Recommendations on guidelines on spectrum sharing. Retrieved from http://traui.gov.in. Accessed on 25th July 2014.
Sridhar, V., & Prasad, R. (2011). Towards a new policy framework for spectrum management in India. Telecommunications Policy, 35, 172–184. doi:10.1016/j.telpol.2010.12.004.
Fransman, M. (2010). The new ICT ecosystem: Implications for Europe. Cambridge: Cambridge University Press.
Arthur, W. B. (2009). The nature of technology: What it is and how it evolves. New York: The Free Press.
Forrester, J. W. (1958). Industrial dynamics: A major breakthrough for decision makers. Harvard Business Review, 36(4), 37–66.
Tookey, A., Whalley, J., & Howick, S. (2006). Broadband adoption in remote and rural Scotland. Telecommunications Policy, 30, 481–495.
Davies, J., Howell, B. E., & Mabin, V. (2008). Telecom Regulation, regulatory behaviour and its impact—a system view. Communications & Strategies, 70, 145.
Lin, M.-S., & Wu, F.-S. (2013). Identifying the determinants of broadband adoption by adoption stage in OECD countries. Telecommunications Policy, 37, 241–251.
Rouvinen, P. (2006). Adoption of digital mobile telephony: Are developing countries different? Telecommunications Policy, 30, 46–63.
Verbeke, W., Dejaeger, K., Martens, D., Hur, J., & Baesens, B. (2012). New insights into churn prediction in the telecommunication sector: A profit driven data mining approach. European Journal of Operational Research, 218, 211–229.
Scholl, H. J. (2001). Agent-based and system dynamics modeling: A call for cross study and joint research. In Proceedings of the IEEE 34th annual hawaii international conference on system sciences(p. 8).
Sterman, John D. (2000). Business dynamics: system thinking and modeling for a complex world. Chapter 10: Path dependence and positive feedback. McGraw-Hill.
Ahmadian, A. (2008). System dynamics and technological innovation system-models of multi-technology substitution processes. Masters’ thesis. Chalmers University of Technology.
Aghion, P., Bloom, N., Blundell, R., Griffith, R. & Howitt, P. (2002). Competition and innovation: An inverted U relationship (No. w9269). National Bureau of Economic Research.
Scherer, F. M. (1967). Market structure and the employment of scientists and engineers. The American Economic Review, 524–531.
Sacco, D., & Schmutzler, A. (2011). Is there a U-shaped relation between competition and investment? International Journal of Industrial Organization, 29(1), 65–73.
Bauer, J. M. (2010). Regulation, public policy, and investment in communications infrastructure. Telecommunications Policy, 34(1), 65–79.
Mansfield, E. (1961). Technical change and the rate of imitation. Econometrica, 29(4), 741–766.
Lin, C. S. (2013). Forecasting and analyzing the competitive diffusion of mobile cellular broadband and fixed broadband in Taiwan with limited historical data. Economic Modelling, 35, 207–213.
Baláž, V., & Williams, A. M. (2012). Diffusion and competition of voice communication technologies in the Czech and Slovak Republics, 1948–2009. Technological Forecasting and Social Change, 79(2), 393–404.
FICORA (2010). Raportti: Radiotaajuuksien kysyntä tulevaisuudessa. Accesses in August 2014 from https://www.viestintavirasto.fi/
Electronic Communications Committee (ECC). (2005). ECC report 65. Auctions and beauty contests in CEPT administrations. Brijuni.
Tallberg, M., Hammainen, H., Töyli, J., Kamppari, S., & Kivi, A. (2007). Impacts of handset bundling on mobile data usage: The case of Finland. Telecommunications Policy, 31(2007), 648–659.
Liikenne- ja viestintäministeriö. Tiedote 20.1.2014: DNA:lle ja TeliaSoneralle lupa taajuuksien yhteiskäyttöön. Accessed in April 2015 from http://www.lvm.fi/tiedote/4425945/dna-lle-ja-teliasoneralle-lupa-taajuuksien-yhteiskayttoon
Prasad, R., & Sridhar, V. (2014). The dynamics of spectrum management: legacy, technology, and economics. Oxford University Press, ISBN-13: 978-0-19-809978-9; ISBN-10: 0–19-809978-9.Rogers, E. M. (2003). Adoption of innovations (5th ed.). New York: Free Press.
Nielsen Study. (2012). Nielsen featured insights: The rise of multi-SIM users: Customers shifting to dual SIM phones to have effective control over costs. Accessed in August 2014 from www.nielsen.com
GSMA. (2013). Official document 12 FAST.13—Embedded SIM remote provisioning architecture, Version 1.1, 17.
Faulhaber, G. R., Hahn, R. W., & Singer, H. J. (2011). Assessing competition in US wireless markets: Review of the FCC’s competition reports. Federal Communications Law Journal, 64, 319.
OECD. (2011). OECD communications outlook 2011. OECD publishing. http://dx.doi.org/10.1787/comms_outlook-2011-en.
ITU-D. (2012). Yearbook of statistics, telecommunication/ICT indicators 2002–2011
Global Wireless Matrix. (2011). Bank of America, Merrill Lynch, industry overview.
Acknowledgments
This work has been partially funded by the End-to-End Cognitive Radio testbed project of Aalto University, which is part of the Tekes TRIAL program. Authors thank to Kalle Ruttik and to anonymous reviewers for their valuable comments.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendices
1.1 Appendix 1: Formulation of network and substitution effects
Under high network effect, path dependence implies that technologies rapidly lock-in to a stable equilibrium after reaching a critical mass. The attractiveness of each product is determined by several elements, one being the effect of compatibility on attractiveness of the technology due to the network effect [79], which can be described by an exponential functionFootnote 12:
where Eca(t)= effect of compatibility on attractiveness at t, se = sensitivity of attractiveness; b(t-1) = installed base of devices at \(t-1\), and th = threshold for compatibility effect.
Then, the technology attractiveness is also affected by the investment incentives which are determined by the market structure:
where Aud(t) = Attractiveness of devices at t, Eca(t-1) = Effect of compatibility on attractiveness of devices at \(t-1\), and Ii(t-1) = incentives to invest at \(t-1\).
During the simulation time, the model accumulates the number of adopted devices, which is calculated by the following integral:
where Ib(t) = Installed base of devices at t, sa(t) = sales of devices at t; Ibo: initial installed base of devices.
The first formula indicates that the number of devices should reach a threshold value to positively impact the attractiveness of the technology. In addition to this, other compatibility elements may also impact attractiveness. Market share is determined by the attractiveness of the technology divided by the total attractiveness of all competing technologies. This relies on the assumption that these two competing technologies are not complement.
Under substitution effect, a new technology substitutes an older one. The substitution effect can be described through a predator-prey competition model by means of the Lotka-Volterra equations which are shown as follows [48]:
where a is the growth or positive feedback from the adoption, b is the inhibition or saturation coefficient, which describes the loss of potential market due to the growth of a technology, and therefore can be expressed as growth rate/capacity. Finally c is the competition coefficient between two technologies (E and M in this case). If \(c_{EM}\) is positive, the technology E influences positively the technology M. If \(c_{EM}\) is negative, the technology E influences negatively the technology M. If \(c_{EM}\) is zero, the influence is neutral. In a predator-prey scenario, the c coefficient of the prey is positive, while the c coefficient of the predator is negative.
These models are adopted in Figs. 3 and 4 by utilizing causal loop diagrams.
1.2 Appendix 2: Parameter description of system dynamics models
Network effect model | |
---|---|
Variable | Value |
Spectrum centralization | from 0 to 1 |
Industry openness | from 0 to 1 |
Incentives to invest | from 0 to 1 |
Threshold for spectrum sharing | 25 %\(^{\mathrm{a}}\) |
Initial amount of spectrum available for user access | 5 % |
Initial base of user-centric devices | 100 |
Initial base of operator-centric devices | 100 |
Substitution model | |
---|---|
Variable | Value |
Spectrum centralization | from 0 to 1 |
Industry openness | from 0 to 1 |
Incentives to invest | from 0 to 1 |
Threshold for user-centric spectrum access | 25 % |
Initial amount of spectrum available for user access | 5 % |
Initial base of operator-centric devices | 90 % |
Initial base of user-centric devices | 10 % |
Competition effect user-centric devices | \(-\)0.02 |
Competition effect operator-centric devices | 0.02 |
1.3 Appendix 3: Country data
List of selected countries with variables describing spectrum centralization and industry opennessFootnote 13:
Countries | Finland | India | Japan | United States |
---|---|---|---|---|
Market concentration (HHI) | 0.332 | 0.186 | 0.348 | 0.247 |
Spectrum concentration (HHI) | 0.327 | 0.131 | 0.347 | 0.287 |
Reselling rights | Yes | No | No | Yes |
Mobile monthly ARPU | 32 | 3 | 84 | 47 |
Churn rate (% monthly) | 1,60 | 5,80 | 0,60 | 1,80 |
Cellular investment per capita per year (USD) | 34,33 | 6,05 | 134,49 | 77,91 |
Price (USD per minute) | 0,14 | 0,04 | 0,63 | 0,39 |
Fraction of prepaid subscriptions (%) | 10 | 95 | 1 | 22 |
Separation of network and service operators | Yes | No | No | No |
Number of MNOs (per service area or nationwide) | 3 | 10 | 3 | 6 |
Rights and permissions
About this article
Cite this article
Basaure, A., Sridhar, V. & Hämmäinen, H. Adoption of dynamic spectrum access technologies: a system dynamics approach. Telecommun Syst 63, 169–190 (2016). https://doi.org/10.1007/s11235-015-0113-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-015-0113-7