Skip to main content
Log in

OFDM-based power-line communication enhancement using a turbo coded adaptive impulsive noise compensator

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we propose a novel estimation and decoding scheme for power-line communication (PLC) systems in impulsive noise environments. The proposed scheme is based on the turbo coding combined with adaptive noise compensation to reduce burst errors and multipath effects. For this purpose, the PLC channel and noise models are introduced, then, the turbo encoder/decoder are inserted in the mapper/demapper and the pilot insertion block for the sake of enhancing preliminary estimation of the transmitted orthogonal frequency division multiplexing signals. The proposed impulsive noise compensator is based on the estimation of the impulse bursts using a new blanking/clipping function, and on the estimation of the signal to impulse noise ratio and the peak to average power ratio. Simulation results illustrate that receivers with combined turbo coding and the proposed noise compensator drastically outperform existing receivers under impulsive noise. In comparison to some existing schemes, the proposed scheme reaches its perfect performance in a reduced 15-paths environment, when the bit error rate and mean square error performance are tested. The improvements in SNR performance are more than 16 dB for BPSK modulation and can reach 12–20 dB for 16-QAM modulation, when a high impulsive noise level is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D’Alessandro, S., Tonello, A. M., & Lampe, L. (2012). Adaptive pulse-shaped OFDM with application to in-home power line communications. Telecommunication Systems, 51(1), 3–13.

    Article  Google Scholar 

  2. Canete, F. J., Cortes, J. A., Diez, L., & Entrambasaguas, J. T. (2003). Modeling and evaluation of the indoor power line transmission medium. IEEE Communications Magazine, 41(4), 41–47.

    Article  Google Scholar 

  3. Kon, L., Razafferson, R., Dmoulin, B., Moulin, F., Gauthier, F., & Zeddam, A. (2005). characterization of electromagnetic emission due to power line communication (plc) networks. Annals of Telecommunications, 60(9–10), 1169–1196.

    Google Scholar 

  4. Yue, Z. M. (2014). Mitigation of the moving radio interferences in the OFDM-based power line communication channels in China. International Journal of Communication Systems, doi:10.1002/dac.2831.

  5. Marx, F., Farah, J., & Francis, C. (2005). Iterative correction of phase noise and nonlinear distortion in orthogonal frequency division multiplexing (OFDM) systems. Annals of Telecommunications, 60(9–10), 1197–1218.

    Google Scholar 

  6. Nikolova, Z., Poulkov, V., Iliev, G., & Egiazarian, K. (2010). New adaptive complex IIR filters and their application in OFDM systems. Signal Image and Video Processing, 4(2), 197–207.

    Article  Google Scholar 

  7. Pinchas, M., & Bobrovsky, B. Z. (2010). Analytic threshold calculation of frequency estimation for OFDM communication. Signal Image and Video Processing, 4(2), 187–195.

    Article  Google Scholar 

  8. Zimmermann, M., & Dostert, K. (2002). A multipath model for the powerline channel. IEEE Transactions on Communications, 50(4), 553–559.

    Article  Google Scholar 

  9. Tlich, M., Zeddam, A., Moulin, F., & Gauthier, F. (2008). Indoor power-line communications channel characterization Up to 100 MHzPart I: One-parameter deterministic model. IEEE Transactions on Power Delivery, 23(3), 1392–1401.

    Article  Google Scholar 

  10. Melit, M., Nekhoul, B., Sekki, D., & Kerroum, K. (2012). Modeling of the transmission of power line communication signal through the power electric transformer. Annals of Telecommunications, 67(9–10), 447–454.

    Article  Google Scholar 

  11. Galli, S. (2011). A novel approach to the statistical modeling of wireline channels. IEEE Transactions on Communications, 59(5), 1332–1345.

    Article  Google Scholar 

  12. Tonello, A. M. (2007). Wideband impulse modulation and receiver algorithms for multiuser power line communications. EURASIP Journal on Advances in Signal Processing, 2007, doi:10.1155/2007/96747.

  13. Middleton, D. (1977). Statistical-physical models of electromagnetic interference. IEEE Transactions on Electromagnetic Compatibility, 19(3), 106–127.

    Article  Google Scholar 

  14. Shebl, S., Soliman, N. F., Elfishawy, N. A., Abou-El-Azmd, A. E., Alshebeili, S. A., & Abdelsamie, F. E. (2013). Performance enhancement of powerline communication systems with efficient low density parity-checkcodes, noise removal, equalization, and chaotic interleaving. Digital Signal Processing, 23(6), 1933–1944.

    Article  Google Scholar 

  15. Chan, M., & Donaldson, R. (1989). Amplitude, width, and interarrival distributions for noise impulses on intrabuilding power line communication networks. IEEE Transactions on Electromagnetic Compatibility, 31(3), 320–323.

    Article  Google Scholar 

  16. Herath, S. P., Tran, N., & Le-Ngoc, T. (2014). Optimal signaling scheme and capacity limit of PLC under Bernoulli-Gaussian impulsive noise. IEEE Transactions on Power Delivery, 30(1), 97–105.

    Article  Google Scholar 

  17. Nassar, M., Jing, L., Mortazavi, Y., Dabak, A., Kim, I. H., & Evans, B. L. (2012). Local utility powerline communications in the 3–500 kHz band: Channel impairments, noise, and standards. IEEE Signal Processing Magazine, 29(5), 116–127.

    Article  Google Scholar 

  18. Ahadiat, M. R., Azmi, P., & Haghbin, A. (2014). Impulsive noise estimation and suppression in OFDM systems over in-home power line channels. International Journal of Communication Systems, doi:10.1002/dac.2831.

  19. Liu, R., Kung, T. L., & Parhi, K. K. (2014). Impulse noise correction in OFDM systems. Journal of Signal Processing Systems, 74(2), 245–262.

    Article  Google Scholar 

  20. Zhidkov, S. V. (2008). Analysis and comparison of several simple impulsive noise mitigation schemes for OFDM receivers. IEEE Transactions on Communications, 56(1), 5–9.

    Article  Google Scholar 

  21. Zhidkov, S. V. (2003). Impulsive noise suppression in OFDM based communication systems. IEEE Transactions on Consumer Electronics, 49(4), 944–948.

    Article  Google Scholar 

  22. Jia, J., & Meng, J. (2014). A dual protection scheme for impulsive noise suppression in OFDM systems. International Journal of Electronics and Communications, 68(1), 51–58.

    Article  Google Scholar 

  23. M’aad, H. B., Goupil, A., Clavier, L., & Gelle, G. (2013). Clipping demapper for LDPC decoding in impulsive channel. IEEE Communication Letters, 17(5), 968–971.

    Article  Google Scholar 

  24. Himeur, Y., & Boukabou, A. (2014). Noise mitigation over powerline communication using LDPC-convolutional code and fusion of mean and median filters. In Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications (SIGMAP) (pp. 5–13).

  25. Trifina, L., Munteanu, V., & Tarniceriu, D. G. (2007). Turbo codes with modified welch-costas interleavers. Annals of Telecommunications, 62(9–10), 1045–1052.

    Google Scholar 

  26. Chuah, T. C. (2007). Adaptive robust turbo equalization for power-line communications. IEEE Transactions on Power Delivery, 22(4), 2172–2179.

    Article  Google Scholar 

  27. Kim, E. C., Seo, S. I., Heo, J., & Kim, J. Y. (2010). Performance of double binary turbo coding for high speed PLC systems. IEEE Transactions on Consumer Electronics, 56(3), 1211–1217.

    Article  Google Scholar 

  28. Balbuena-Campuzano, C. A., & García-Ugalde, F. J. (2014). Performance of HSR and QPP-based interleavers for turbo coding on power line communication systems. Signal Image and Video Processing, 8(4), 615–624.

    Article  Google Scholar 

  29. Caire, G., Al-Naffouri, T. Y., & Narayanan. A. K. (2008). Impulse noise cancellation in OFDM: An application of compressed sensing. In IEEE International Symposium on Information Theory (ISIT) (pp. 1293–1297).

  30. Al-Naffouri, T. Y., Quadeer, A. A., Al-Shaalan, F. F., & Hmida, H. (2011). Impulsive noise estimation and cancellation in DSL using compressive sampling. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2133–2136).

  31. Al-Naffouri, T. Y., Quadeer, A. A., & Caire, G. (2014). Impulse noise estimation and removal for OFDM systems. IEEE Transactions on Communications, 62(3), 976–989.

  32. Lin, J., Nassar, M., & Evans, B. L. (2013). Impulsive noise mitigation in powerline communications using sparse bayesian learning. IEEE J. Sel. Areas. Commun., 31(7), 1172–1183.

    Article  Google Scholar 

  33. Nassar, M., Schniter, P., & Evans, B. L. (2014). A factor graph approach to joint OFDM channel estimation and decoding in impulsive noise environments. IEEE Transactions on Signal Processing, 62(6), 1576–1589.

    Article  Google Scholar 

  34. Meng, H., Guan, Y. L., & Chen, S. (2005). Modeling and analysis of noise effects on broad-band power-line communications. IEEE Transactions on Power Delivery, 20(2), 630–637.

    Article  Google Scholar 

  35. Nouvel, F., & Tanguy, P. (2009). What is about future high speed power line communication systems for in-vehicles networks?. In The 7th Internationl Conferece on Information, Communication and Signal Processing (ICICS) (pp. 1–6).

  36. Guerrieri, L., Bisaglia, P., Dell Amico, G., & Guerrini, E. (2007). Performance of the turbo coded HomePlug AV system over power-line channels. In IEEE International Symposium on Power Line Communication and Its Applications (ISPLC) (pp. 138–143).

  37. Ferreira, H. C., Lampe, L., Newbury, J., & Swart, T. G. (2010). Power line communications: Theory and applications for narrowband and broadband communications over power lines. West Sussex: Wiley. 2010.

    Book  Google Scholar 

  38. Peled, A., & Ruiz, A. (1980). Frequency domain data transmission using reduced computational complexity algorithms, Acoustics. In IEEE International Conference on Speech, and Signal Processing (ICASSP) (pp. 964–967).

  39. Hooijen, O. G. (1998). On the channel capacity of the residential power circuit used as a digital communications medium. IEEE Communications Letters, 2(10), 267–268.

    Article  Google Scholar 

  40. Vaseghi, S. V. (2008). Advanced digital signal processing and noise reduction (4th ed.). West Sussex: Wiley.

    Book  Google Scholar 

  41. Woodard, J. P., & Hanzo, L. (2000). Comparative study of turbo decoding techniques: An overview. IEEE Transactions on Vehicular Technology, 49(6), 2208–2233.

    Article  Google Scholar 

  42. Hanzo, L., Liew, T. H., & Yeap, B. L. (2002). Turbo coding, turbo equalisation and space-time coding for transmission over fading channels. Chichester: Wiley.

    Book  Google Scholar 

Download references

Acknowledgments

This Project was financially supported by the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) of Algeria (PNR 13/u18/4368)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Himeur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himeur, Y., Boukabou, A. OFDM-based power-line communication enhancement using a turbo coded adaptive impulsive noise compensator. Telecommun Syst 62, 481–494 (2016). https://doi.org/10.1007/s11235-015-0087-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0087-5

Keywords

Navigation