Advertisement

Telecommunication Systems

, Volume 61, Issue 4, pp 717–731 | Cite as

Self-learning and self-adaptive framework for supporting high reliability and low energy expenditure in WSNs

  • Osama Khader
  • Andreas WilligEmail author
  • Adam Wolisz
Article

Abstract

In this paper we proposed, designed and evaluated a novel decentralized and self-learning framework to support both high reliability and energy-efficiency for periodic traffic applications in WSNs. Our autonomous framework comprises three main components: estimation and identification of periodic flows, dynamic wakeup-sleep scheduling and asynchronous channel hopping. With asynchronous channel hopping the frequency hopping pattern is determined by each source node autonomously, and forwarders have to identify and follow the pattern. We also propose a light and efficient controller to eliminate the collision caused by multi-flow overlap at forwarders. We present design and evaluation of our autonomous framework using realistic trace-based simulation. The results show that our asynchronous channel hopping solution improves the packet reception rate compared to the single channel solutions without the need of an expensive signaling and time synchronization overhead. We also show that with this scheme the average energy consumption yields a \(\approx \) 50 % lower than the single channel solutions. Furthermore, we analyze in detail the energy consumption characteristics of our autonomous framework when operated with a popular transceiver, the ChipCon CC2420 and Texas Instruments MSP430 Microcontroller. We analyze how much various factors contribute to the overall energy consumption. These insights provide valuable guidance on where to start with any effort geared towards saving energy.

Keywords

Wireless sensor networks Periodic traffic Self-learning Sensitivity analysis Performance analysis 

References

  1. 1.
    Glaser, S.D. (2004). Some real-world applications of wireless sensor nodes. In Proceedings of the (SPIE) Symposium on Smart Structures and Materials/ NDE 2004. San Diego, California.Google Scholar
  2. 2.
    Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., & Culler, D. (2004). An analysis of a large scale habitat monitoring application. In Proceedings of the ASM SenSys ’04 (pp. 214–226).Google Scholar
  3. 3.
    Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S., Dawson, T., Buonadonna, P., Gay, D., & Hong, W. (2005). A macroscope in the redwoods. In Proceedings of the ACM SenSys ’05 (pp. 51–63).Google Scholar
  4. 4.
    Doherty, L., Lindsay, W., & Simon, J. (2007). Channel-specific wireless sensor network path data. In IEEE 16th Internatioanl Conference on Computer Communications and Networks (ICCCN), 2007 (pp. 89–94). Turtle Bay Resort, Honolulu.Google Scholar
  5. 5.
    Chen, X., Han, P., He, Q.-S., Tu, S.-L., & Chen, Z.-L. (2006). A multi-channel mac protocol for wireless sensor networks. In Proceedings of the Sixth IEEE International Conference on Computer and Information Technology 2006, CIT ’06 (pp. 224–230). China: Fudan University.Google Scholar
  6. 6.
    HART Communication Foundation. (2008). TDMA Data Link Layer Specification, HCF SPEC 075 Revision 1.1, 17 May.Google Scholar
  7. 7.
    ISA. ISA 100: wireless system for automation. Available: http://isa.zigbee.org.
  8. 8.
    Kim, Y., Shin, H., & Cha, H. (2008). Y-mac: An energy-efficient multi-channel mac protocol for dense wireless sensor networks. In Proceedings of the 7th International Conference on Information Processing in Sensor Networks (IPSN ’08) (pp. 53–63). Washington.Google Scholar
  9. 9.
    Khader, O., Willig, A., & Wolisz, A. (2009). Distributed wakeup scheduling scheme for supporting periodic traffic in WSNs. In Proceedings of the European Wireless (EW 2009) (pp. 287–292). Aalborg.Google Scholar
  10. 10.
    Myers, R., & Montgomery, D. (2002). Response surface methodology. New York: Wiley.Google Scholar
  11. 11.
    Rubinstein, R. Y., & Melamed, B. (1998). Modern simulation and modeling. New York: Wiley.Google Scholar
  12. 12.
    Khader, O., Willig, A., & Wolisz, A. (2013). An autonomous framework for supporting energy efficiency and communication reliability in WSNs. In Proceedings of the IEEE/IFIP Wireless and Mobile Networking Conference (WMNC’2013). Dubai.Google Scholar
  13. 13.
    Khader, O., Willig, A., & Wolisz, A. (2011). A simulation model for the performance evaluation of wirelesshart tdma protocol. Technical report, Telecommunication Networks Group, Technical UniversityBerlin, TKN Technical Report Series TKN-11-001, Berlin.Google Scholar
  14. 14.
    Handziski, V., Koepke, A., Willig, A., & Wolisz, A. (2006). Twist: A scalable and reconfigurable testbed for wireless indoor experiments with sensor network. In Proceedings of the 2nd International Workshop on Multi-hop Ad Hoc Networks: from Theory to Reality, (RealMAN 2006) (pp. 63–70). Florence.Google Scholar
  15. 15.
    Chipcon. (2004). CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver Available: http://www.chipcon.com.
  16. 16.
    Gay, D., Levis, P., Behren, R.V., Welsh, M., Brewer, E., & Culler, D. (2003). The nesC language: A holistic approach to networked embedded systems. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation (PLDI), San Diego.Google Scholar
  17. 17.
    Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., & Pister, K. (2000). System architecture directions for networked sensors. ACM SIGPLAN Notices, 35(11), 93–104.CrossRefGoogle Scholar
  18. 18.
    Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., & Levis, P. (2009). Collection tree protocol. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys 2009) (pp. 1–13). Berkeley.Google Scholar
  19. 19.
    Networks, Dust. (2007). Wirelesshart technical data sheet. Dust Networks: White paper.Google Scholar
  20. 20.
    Varga, A. OMNeT++ discrete event simulation system. Available: http://www.omnetpp.org.
  21. 21.
    NICTA. The Castalia simulator for Wireless Sensor Networks. Available: http://castalia.npc.nicta.com.au
  22. 22.
    Khader, O., Willig, A., & Wolisz, A. (2012). Analyzing the energy consumption of wirelesshart tdma protocol. Technical report, Telecommunication Networks Group, Technical UniversityBerlin, TKN Technical Report Series TKN-12-00x, Berlin.Google Scholar
  23. 23.
    Zhang, N., & Anpalagan, A. (2010). Sensitivity of SWAN QoS model in MANETs with proactive and reactive routing: A simulation study. Telecommunications Systems, 44(1–2), 17–27.CrossRefGoogle Scholar
  24. 24.
    Dargie, W., Chao, X., & Denko, M. K. (2010). Modelling the energy cost of a fully operational wireless sensor network. Telecommunications Systems, 44(1–2), 3–15.CrossRefGoogle Scholar
  25. 25.
    El-Hoiydi, A., Decotignie, J.-D., Enz, C. & Roux, E.L. (2003). Poster abstract: Wisemac, an ultra low power mac protocol for the wisenet wireless sensor network. In Proceedings of the ACM SenSys 03. Los Angeles, California. Poster Abstract.Google Scholar
  26. 26.
    Hurni, P., Braun, T., & Anwander, M. (2010). Evaluation of WiseMAC and extensions on wireless sensor nodes. Telecommunications Systems, 43(1–2), 49–58.CrossRefGoogle Scholar
  27. 27.
    Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (ACM SenSys). Baltimore.Google Scholar
  28. 28.
    Sthapit, P., & Pyun, J.-Y. (2011). Medium reservation based sensor MAC protocol for low latency and high energy efficiency. Telecommunications Systems, 52(4), 2387–2395.Google Scholar
  29. 29.
    van, T., & Langendoen, D.K. (2003). An adaptive energy-efficient mac protocol for wireless sensor networks. In Proceedings of the ACM SenSys ’03’. Los Angeles.Google Scholar
  30. 30.
    Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient mac protocol for wireless sensor networks. In Proceedings of the IEEE INFOCOM 2002. New York.Google Scholar
  31. 31.
    Khan, B. M., & Ali, F. H. (2013). Collision Free Mobility Adaptive (CFMA) MAC for wireless sensor networks. Telecommunications Systems, 52(4), 2459–2474.CrossRefGoogle Scholar
  32. 32.
    Rajendran, V., Obraczka, K., & Garcia-Luna-Aceves, J.J. (2003). Energy-efficient, collision-free medium access control for wireless sensor networks. In Proceedings of the ACM SenSys 03 Los Angeles.Google Scholar
  33. 33.
    van Hoesel, L., & Havinga, P. (2004). A lightweight medium access protocol for wireless sensor networks. In Proceedings of the INSS, 2004.Google Scholar
  34. 34.
    HART Communication Foundation. (2008). HART Communication Protocol Specification, HCF SPEC 13 Revision 7.1, 05 June.Google Scholar
  35. 35.
    Khader, O., & Willig, A. (2013). An energy consumption analysis of the wirelessHART TDMA protocol. Computer Communications, 36(7), 804–816.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Telecommunication Networks GroupTechnische Universität BerlinBerlinGermany
  2. 2.Department of Computer Science and Software EngineeringUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations