Telecommunication Systems

, Volume 62, Issue 2, pp 277–288 | Cite as

SDAW: secure data aggregation watermarking-based scheme in homogeneous WSNs

  • Djallel Eddine Boubiche
  • Sabrina Boubiche
  • Homero Toral-Cruz
  • Al-Sakib Khan Pathan
  • Azzedine Bilami
  • Samir Athmani
Article

Abstract

Redundant data retransmission problem in wireless sensor networks (WSNs) can be eliminated using the data aggregation process which combines similar data to reduce the resource-consumption and consequently, saves energy during data transmission. In the recent days, many researchers have focused on securing this paradigm despite the constraints it imposes such as the limited resources. Most of the solutions proposed to secure the data aggregation process in WSNs are essentially based on the use of encryption keys to protect data during their transmission in the network. Indeed, the key generation and distribution mechanisms involve additional computation costs and consume more of energy. Considering this, in this paper, we propose a new security mechanism to secure data aggregation in WSNs called SDAW (secure data aggregation watermarking-based scheme in homogeneous WSNs). Our mechanism aims to secure the data aggregation process while saving energy. For this, the mechanism uses a lightweight fragile watermarking technique without encryption to insure the authentication and the integrity of the sensed data while saving the energy. The links between the sensor nodes and the aggregation nodes, and also the links between the aggregation nodes and the base station are secured by using the watermarking mechanism.

Keywords

Data aggregation Digital watermarking Security  Wireless sensor networks Energy efficiency 

References

  1. 1.
    Simmons, G. J. (1979). Symmetric and asymmetric encryption. ACM Computing Surveys (CSUR), 11(4), 305–330.CrossRefGoogle Scholar
  2. 2.
    Hu, L., & Evans, D. (2003). Secure aggregation for wireless network. In Proceeding of the 2003 Symposium on Applications and the Internet Workshop, SAINT’03 (pp. 384–394). FL, USA: Orlando.Google Scholar
  3. 3.
    Du, W., Deng, J., Han, Y. S., & Varshney, P. K. (2003). A Witness-Based Approach For Data Fusion Assurance In Wireless Sensor Networks. In Procceding of the 60th IEEE Global Communications Conference, GLOBECOM’04 (pp. 1435–1439) San Francisco, USA, 3Google Scholar
  4. 4.
    Jadia, P., & Mathuria, A. (2004). Efficient secure aggregation in sensor networks. In Proceedings of the 11th conference on High Performance Computing, HiPC’04 (pp. 40–49) Bangalore, India, 3296Google Scholar
  5. 5.
    Mahimkar, A., & Rappaport, T. S. (2004). SecureDAV: A secure data aggregation and verification protocol for sensor networks. In Proceedings of IEEE Global Telecommunications Conference (pp. 2175–2179) GLOBECOM ’04Google Scholar
  6. 6.
    Sanli, H. O., Ozdemir, S., & Cam, H. (2004). SRDA: Secure reference-based data aggregation protocol for wireless sensor networks. In IEEE 60 th Vehicular Technology Conference. VTC2004-Fall(pp. 4650–4654.), vol. 7Google Scholar
  7. 7.
    Castelluccia, C., Mykletun, E., & Tsudik, G. (2005). Efficient aggregation of encrypted data in wireless sensor networks. In Proceedings of the Conference on Mobile and Ubiquitous Systems: Networking and Services, (pp. 109–117)Google Scholar
  8. 8.
    Bagaa, M., Lasla, N., Ouadjaout, A., & Challal, Y. (2007). SEDAN: Secure and Efficient protocol for Data Aggregation in wireless sensor Networks. In 32nd IEEE Conference on Local Computer Networks, 2007. LCN 2007. pp.1053–1060)Google Scholar
  9. 9.
    Chen, C. M., Lin, Y. H., Lin, Y. C., & Sun, H. M. (2012). RCDA: Recoverable concealed data aggregation for data integrity in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(4), 727–734.CrossRefGoogle Scholar
  10. 10.
    Roy, S., Conti, M., Setia, S., & Jajodia, S. (2012). Secure data aggregation in wireless sensor networks. Information Forensics and Security, IEEE Transactions on, 7(3), 1040–1052.CrossRefGoogle Scholar
  11. 11.
    Hen, C. M., & Lin, Y. H. Sun. (2013). SASHIMI: Secure aggregation via successively hierarchical inspecting of message integrity on WSN. Journal of Information Hiding and Multimedia Signal Processing, 4(1), 57–72.CrossRefGoogle Scholar
  12. 12.
    Kuttyamma, A. J., & Chinchu Krishna, S. (2013). Secure data accumulation and certification procedure for sensor networks. IOSR Journal of Engineering (IOSRJEN), 43–46Google Scholar
  13. 13.
    Bhasker, L. (2014). Genetically derived secure cluster-based data aggregation in wireless sensor networks. IET Information Security, 8(1), 1–7.CrossRefGoogle Scholar
  14. 14.
    Yoon, M., Jang, M., Kim, H. I., & Chang, J. W. (2014). A signature-based data security technique for energy-efficient data aggregation in wireless sensor networks. International Journal of Distributed Sensor Networks, 2014, 1–10.CrossRefGoogle Scholar
  15. 15.
    Chan, H., Perrig, A., & Song, D. (2006). Secure hierarchical in-network aggregation in sensor networks. In Proceedings of the 13th ACM Conference on Computer and Communications, (pp. 278–287)Google Scholar
  16. 16.
    Sun, X., Su, J., Wang, B., & Liu, Q. (2013). Digital watermarking method for data integrity protection in wireless sensor networks. International Journal of Security and Its Applications, 7(4), 407–416.Google Scholar
  17. 17.
    Rajagopalan, R., & Varshney, P. K. (2006). Data aggregation techniques in sensor networks: A survey. Communications Surveys & Tutorials, IEEE, 8(4), 48–63.CrossRefGoogle Scholar
  18. 18.
    Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30(14), 2826–2841.CrossRefGoogle Scholar
  19. 19.
    Eastlake, D., & Jones, P. (2001). RFC3174: US Secure Hash Algorithm 1 (SHA-1). http://www.faqs.org/rfcs/rfc3174.html.
  20. 20.
    Ganesan, P., Venugopalan, R., Peddabachagari, P., Dean, A., Mueller, F., & Sichitiu, M. (2003). Analyzing and modeling encryption overhead for sensor network nodes. In Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications, (pp. 151–159)Google Scholar
  21. 21.
    Sankarasubramaniam, Y., Akyildiz, I. F., & McLaughlin, S. W. (2003). Energy efficiency based packet size optimization in wireless sensor networks. In 2003 IEEE International Workshop on Sensor Network Protocols and Applications, 2003. Proceedings of the First IEEE, (pp. 1–8)Google Scholar
  22. 22.
    Vuran, M. C., & Akyildiz, I. F. (2008). Cross-layer packet size optimization for wireless terrestrial, underwater, and underground sensor networks. In INFOCOM 2008. The 27th Conference on Computer Communications, (pp. 780–788).Google Scholar
  23. 23.
    Dong, W., Chen, C., Liu, X., He, Y., Liu, Y., Bu, J., et al. (2014). Dynamic packet length control in wireless sensor networks. IEEE Transaction on Wireless Communication Networks, 13(3), 1172–1181.CrossRefGoogle Scholar
  24. 24.
    Dener, D. (2014). Optimum packet length over data transmission for wireless sensor networks. In Proceedings of the 8th International Conference on Sensing Technology (pp. 52–56). UK: Liverpool.Google Scholar
  25. 25.
    The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/ [last accessed: 17 Oct, 2014]
  26. 26.
    Boubiche, D. E., & Bilami, A. (2011). HEEP (hybrid energy efficiency protocol) based on chain clustering. International Journal of Sensor Networks, 10(1–2), 25–35.CrossRefGoogle Scholar
  27. 27.
    Wei, Y. E., Heidemann, J., & et Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE. IEEE, 2002. (pp. 1567–1576).Google Scholar
  28. 28.
    Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless micro sensor networks. IEEE Transactions on the Wireless Communications, 1(4), 660–670.CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Beaver, D., Feigenbaum, J., Kilian, J., & Rogaway, P. (1991). Security with low communication overhead. Advances in Cryptology-CRYPT0’90 (pp. 62–76). Berlin: Springer.CrossRefGoogle Scholar
  31. 31.
    Chang, C. C., Muftic, S., & Nagel, D. J. (2007). Measurement of energy costs of security in wireless sensor nodes. In Computer Communications and Networks, 2007. ICCCN 2007. Proceedings of 16th International Conference on, (pp. 95–102).Google Scholar
  32. 32.
    Solis, I., & Obraczka, K. (2004). The impact of timing in data aggregation for sensor networks. In 2004 IEEE International Conference on Communications, vol. 6, (pp. 3640–3645).Google Scholar
  33. 33.
    Chowdhury, A. R., Chatterjee, T., & DasBit, S. (2014). LOCHA: A light-weight one-way cryptographic hash algorithm for wireless sensor network. ANT-2014. Procedia Computer Science, 32, 497–504.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Djallel Eddine Boubiche
    • 1
  • Sabrina Boubiche
    • 1
  • Homero Toral-Cruz
    • 2
  • Al-Sakib Khan Pathan
    • 3
  • Azzedine Bilami
    • 1
  • Samir Athmani
    • 1
  1. 1.LaSTIC Laboratory, Department of Computer ScienceUniversity of BatnaBatnaAlgeria
  2. 2.Department of Sciences and EngineeringUniversity of Quintana Roo (UQROO)ChetumalMéxico
  3. 3.Department of Computer ScienceKulliyyah (Faculty) of Information and Communication Technology International Islamic University Malaysia (IIUM)GombakMalaysia

Personalised recommendations