RViz: a toolkit for real domain data visualization

Abstract

In computational science and computer graphics, there is a strong requirement to represent and visualize information in the real domain, and many visualization data structures and algorithms have been proposed to achieve this aim. Unfortunately, the dataflow model that is often selected to address this issue in visualization systems is not flexible enough to visualize newly invented data structures and algorithms because this scheme can accept only specific data structures. To address this problem, we propose a new visualization tool, RViz, which is independent of the input information data structures. Since there is no requirement for additional efforts to manage the flow networks and the interface to abstracted information is simple in RViz, any scientific information visualization algorithms are easier to implement than the dataflow model. In this paper, we provide case studies in which we have successfully implemented new data structures and related algorithms using RViz, including geometry synthesis, distance field representation, and implicit surface reconstruction. Through these cases, we show how RViz helps users visualize and understand any hidden insights in input information.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    The Groovy language [8] has similar syntax to Java but provides simpler ways for representations, so we applied Groovy to all code lists if not mentioned otherwise.

References

  1. 1.

    Bærentzen, J. A., & Christensen, N. J. (2001). A technique for volumetric CSG based on morphology. In Proceedings of the International Workshop on Volume Graphics (pp.71–79).

  2. 2.

    Benson, D., & Davis, J. (2002). Octree textures. ACM Transactions on Graphics, 21, 785–790.

    Article  Google Scholar 

  3. 3.

    Childs, H., Brugger, E., Bonnell, K., Meredith, J., Miller, M. & Whitlock, B., et al. (2005). A contract based system for large data visualization. IEEE Visualization, 25.

  4. 4.

    Cook, R. L. (1986). Stochastic sampling in computer graphics. ACM Transactions on Graphics (TOG), 5, 51–72.

    Article  Google Scholar 

  5. 5.

    Frisken, S.F., Perry, R.N., Rockwood, A.P., & Jones, T.R. (2000). Adaptively sampled distance fields: a general representation of shape for computer graphics. ACM SIGGRAPH (249–254).

  6. 6.

    Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of reusable object-oriented software. Boston: Addison-Wesley Longman Publishing Co., Inc.

    Google Scholar 

  7. 7.

    Groovy community. Groovy programming language. http://groovy.codehaus.org

  8. 8.

    Guendelman, E., Bridson, R., & Fedkiw, R. (2003). Nonconvex rigid bodies with stacking. ACM Transactions on Graphics, 22, 871–878.

    Article  Google Scholar 

  9. 9.

    Hachisuka, T., Ogaki, S., & Jensen, H. W. (2008). Progressive photon mapping. ACM Transactions on Graphics, 27, 130:1– 130:8.

    Google Scholar 

  10. 10.

    Hart, J. C. (1996). Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces. The Visual Computer, 12(10), 527–545.

    Article  Google Scholar 

  11. 11.

    Heer, J., & Agrawala, M. (2006). Software design patterns for information visualization. IEEE Transaction on Visualization and Computer Graphics, 12, 853–860.

    Article  Google Scholar 

  12. 12.

    Heer, J., Card, S.K. & Landay, J.A. (2005). Prefuse: a toolkit for interactive information visualization. In Proceedings of SIGCHI conference on Human factors in computing systems (pp. 421–430).

  13. 13.

    IBM. OpenDX. http://www.research.ibm.com/dx

  14. 14.

    Kitware. Visualization toolkit. http://www.vtk.org

  15. 15.

    Koop, D., Scheidegger, C. E., Callahan, S. P., Freire, J., & Silva, C. T. (2008). VisComplete: automating suggestions for visualization pipelines. IEEE Transaction on Visualization and Computer Graphics, 14(6), 1691–1698.

    Article  Google Scholar 

  16. 16.

    Park, T., Lee, S.-H., & Kim, C.-H. (2011). Analytic Solutions of Integral Moving Least Squares for Polygon Soups. PrePrint: IEEE transactions on Visualization and Computer Graphics.

  17. 17.

    Lee, S. -H., Park, T. & Kim, C. -H. (2011). Primitive Trees for Precomputed Distance Queries. Technical paper.

  18. 18.

    Lee, S. -H., Park, T., Kim, J. -H., & Kim, C. -H. (2011). Adaptive synthesis of distance fields. PrePrint: IEEE transactions on Visualization and Computer Graphics.

  19. 19.

    Lefebvre, S., & Hoppe, H. (2005). Parallel controllable texture synthesis. Transactions on Graphics, 24(3), 777–786.

    Article  Google Scholar 

  20. 20.

    Lefebvre, S., & Hoppe, H. (2007). Compressed random-access trees for spatially coherent data. In Proceedings Eurographics Symp. on Rendering.

  21. 21.

    Losasso, F., Gibou, F., & Fedkiw, R. (2004). Simulating water and smoke with an octree data structure. ACM Transactions on Graphics, 23, 457–462.

    Article  Google Scholar 

  22. 22.

    MeVis. MeVisLab: A development environment for medical image processing and visualization. http://www.MeVisLab.de

  23. 23.

    Occam, William of. Occam’s razor. http://en.wikipedia.org/wiki/Occam%27s_razor

  24. 24.

    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., & Seidel, H.-P. (2003). Multi-level partition of unity implicits. ACM SIGGRAPH, 22(3), 463–470.

    Article  Google Scholar 

  25. 25.

    Park, T., Lee, S. -H., Kim, J. -H. & Kim, C. -H. (2010). Cuda-based signed distance field calculation for adaptive grids. In Proceedings of the IEEE International Conference on Computer and Information Technology (pp.1202–1206).

  26. 26.

    Pollak, D. (2009). Beginning Scala. Dordrecht: Springer.

    Google Scholar 

  27. 27.

    Reshetov, A., Soupikov, A., & Hurley, J. (2005). Multi-level ray tracing algorithm. ACM SIGGRAPH, 24, 1176–1185.

    Google Scholar 

  28. 28.

    Scala development team. Scala programming language. http://scala-lang.org

  29. 29.

    Schroeder, W.J., Martin, K.M. & Lorensen W.E. (1996). The design and implementation of an object-oriented toolkit for 3d graphics and visualization. IEEE Visualization, PP. 93–100.

  30. 30.

    Scientific Computing and Imaging Institute (SCI). SCIRun: A scientific computing problem solving environment. http://www.scirun.org

  31. 31.

    Shen, C., O’Brien, J.F. & Shewchuk, J.R. (2004) Interpolating and approximating implicit surfaces from polygon soup. In ACM SIGGRAPH (pp.896–904).

  32. 32.

    Sud, A., Govindaraju, N.K., Gayle, R. & Manocha D. (2006). Interactive 3d distance field computation using linear factorization. In Proceedings of the ACM symposium on Interactive 3D Graph. and Games (SI3D) (pp. 117–124).

  33. 33.

    Takatsuka, M., & Gahegan, M. (2002). GeoVISTA Studio: A codeless visual programming environment for geoscientific data analysis and visualization. Computational Geoscience, 28, 1131–1144.

    Article  Google Scholar 

  34. 34.

    Upson, C., Faulhaber, Jr., T., Kamins, D., Laidlaw, D.H., Schlegel, D., Vroom, J., Gurwitz, R. & van Dam A. The application visualization.

  35. 35.

    Wald, I., Günther, J. & Slusallek P. (2004). Balancing considered harmful - faster photon mapping using the voxel volume heuristic. Computer Graph. Forum, 22(3).

  36. 36.

    Wald, I., Mark, W. R., Günther, J., Boulos, S., Ize, T., Hunt, W., et al. (2009). State of the art in ray tracing animated scenes. Computer Graphics Forum, 28(6), 1691–1722.

    Article  Google Scholar 

  37. 37.

    Walrath, K., Campione, M., Huml, A., & Zakhour, S. (2004). The JFC swing tutorial: A guide to constructing GUIs. Redwood City: AddisonWesley Longman Publishing Co., Inc..

    Google Scholar 

  38. 38.

    Wei, L.-Y., Lefebvre, S., Kwatra, V. & Turk G. (2009). State of the art in example-based texture synthesis. In Eurographics 2009, State of the Art Report.

  39. 39.

    Wu J., Kobbelt L. (2003). Piecewise linear approximation of signed distance fields. In Proceedings of the Vision, Modeling, and Visualization (pp.513–520).

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (No. 2011-0017595). This work was supported by the Technology Innovation Program (Industrial Strategic technology development program, 10035619) funded by the Ministry of Knowledge Economy(MKE, Korea).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang-Hun Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kam, H.R., Lee, SH., Park, T. et al. RViz: a toolkit for real domain data visualization. Telecommun Syst 60, 337–345 (2015). https://doi.org/10.1007/s11235-015-0034-5

Download citation

Keywords

  • Spatial data visualization
  • Visualization toolkit
  • Decorator pattern
  • Lightweight framework