Skip to main content
Log in

Adaptive multi-polling scheduler for QoS support of video transmission in IEEE 802.11e WLANs

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The 802.11E Task Group has been established to enhance quality of service (QoS) provision for time-bounded services in the current IEEE 802.11 medium access control protocol. The QoS is introduced throughout hybrid coordination function controlled channel access (HCCA) for the rigorous QoS provision. In HCCA, the station is allocated a fixed transmission opportunity (TXOP) based on its TSPEC parameters so that it is efficient for constant bit rate streams. However, as the profile of variable bit rate traffics is inconstant, they are liable to experience a higher delay especially in bursty traffic case. In this paper, we present a dynamic TXOP assignment algorithm called adaptive multi-polling TXOP scheduling algorithm (AMTXOP) for supporting the video traffics transmission over IEEE 802.11e wireless networks. This scheme invests a piggybacked information about the size of the subsequent video frames of the uplink streams to assist the hybrid coordinator accurately assign the TXOP according to actual change in the traffic profile. The proposed scheduler is powered by integrating multi-polling scheme to further reduce the delay and polling overhead. Extensive simulation experiments have been carried out to show the efficiency of the AMTXOP over the existing schemes in terms of the packet delay and the channel utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abouaissa, A., Brahmia, M. E. A., & Lorenz, P. (2013). Increasing end-to-end fairness over IEEE 802.11e-based wireless mesh networks. International Journal of Communication Systems, 26(1), 1–12. doi:10.1002/dac.1319.

    Article  Google Scholar 

  2. Al Jubari, A. M., Othman, M., Ali, B. M., & Hamid, N. A. W. A. (2011). TCP performance in multi-hop wireless ad hoc networks: Challenges and solution. EURASIP Journal on Wireless Communications and Networking, 2011(1), 1–25.

    Article  Google Scholar 

  3. Al Maqri, M., Othman, M., Ali, B., & Hanapi, Z. (2013). Adaptive TXOP assignment for QoS support of video traffic in IEEE 802.11e networks. In 2013 IEEE International RF and Microwave Conference (RFM) (pp. 144–149).

  4. Ali, N. A., Bourawy, A., & Hassanein, H. (2013). Selectivity function scheduler for IEEE 802.11e HCCA access mode. Wireless Communications and Mobile Computing, 13(2), 95–110.

    Article  Google Scholar 

  5. Birkos, K., Tselios, C., Dagiuklas, T., & Kotsopoulos, S. (2013). Peer selection and scheduling of H. 264 SVC video over wireless networks. In Wireless Communications and Networking Conference (WCNC), 2013 IEEE (pp. 1633–1638). IEEE.

  6. Cecchetti, G., Ruscelli, A. L., Mastropaolo, A., & Lipari, G. (2012). Dynamic TXOP HCCA reclaiming scheduler with transmission time estimation for IEEE 802.11e real-time networks. In Proceedings of the 15th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (pp. 239–246). ACM.

  7. Cecchetti, G., Ruscelli, A., Mastropaolo, A., & Lipari, G. (2012). Providing variable TXOP for IEEE 802.11e HCCA real-time networks. In Wireless Communications and Networking Conference (WCNC) (pp. 1508–1513).

  8. Chaudhuri, S., & Ram, A. (2013). System for Creating a Capsule Representation of an Instructional Video. US Patent 8,345,990.

  9. Chou, C.-W., Lin, K. J., & Lee, T.-H. (2011). On efficient multipolling with various service intervals for IEEE 802.11e WLANs. In Wireless Communications and Mobile Computing Conference (IWCMC), 2011 7th International (pp. 1906–1911).

  10. Choudhury, S., & Gibson, J. D. (2008). Throughput optimization for wireless LANs in the presence of packet error rate constraints. IEEE Communications Letters, 12(1), 11–13.

    Article  Google Scholar 

  11. Cicconetti, C., Lenzini, L., Mingozzi, E., & Stea, G. (2005). A software architecture for simulating IEEE 802.11e HCCA. In IPS-MoMe05: Proceeding from the 3rd Workshop on Internet Performance, Simulation, Monitoring and Measurement (pp. 97–104).

  12. Einhaus, M., Klein, O., & Walke, B. (2008). Comparison of OFDMA resource scheduling strategies with fair allocation of capacity. In 5th IEEE Consumer Communications and Networking Conference, 2008. CCNC 2008 (pp. 407–411). IEEE.

  13. Fang, Z., Xu, S., Wan, C., Wang, Z., Wu, S., & Zeng, W. (2006). Modeling MPEG-4 VBR video traffic by using ANFIS. In D. S. Huang, K. Li, & G. Irwin (Eds.), Intelligent Computing in Signal Processing and Pattern Recognition. Lecture Notes in Control and Information Sciences (Vol. 345, pp. 958–963). Berlin: Springer.

    Google Scholar 

  14. Fitzek., F., & Reisslein, M. (2000). MPEG-4 and H.263 Video Traces for Network Performance Evaluation. Technical Report TKN-00-006, Telecommunication Networks Group, Technische Universität Berlin.

  15. Fitzek, F., & Reisslein, M. (2001). MPEG-4 and H.263 video traces for network performance evaluation. IEEE Network, 15(6), 40–54.

    Article  Google Scholar 

  16. Fu, H., & Zhang, L. (2003). Variable segmentation based on intrinsic video rate characteristics to transport pre-stored video across networks. International Journal of Communication Systems, 16(10), 923–934. doi:10.1002/dac.629.

    Article  Google Scholar 

  17. Gautam, N., Petander, H., & Noel, J. (2013). A comparison of the cost and energy efficiency of prefetching and streaming of mobile video. In Proceedings of the 5th Workshop on Mobile Video, MoVid ’13 (pp. 7–12). New York, NY: ACM.

  18. Grilo, A., Macedo, M., & Nunes, M. (2003). A scheduling algorithm for QoS support in IEEE802.11 networks. IEEE Wireless Communications, 10(3), 36–43.

    Article  Google Scholar 

  19. Haddad, R., & McGarry, M. P. (2012). Feed Forward Bandwidth Indication (FFBI): Cooperation for an accurate bandwidth forecast. Computer Communications, 35(6), 748–758.

    Article  Google Scholar 

  20. Huang, J.-J., Chen, Y.-H., & Shiung, D. (2010). A four-way-polling QoS scheduler for IEEE 802.11e HCCA. In TENCON 2010—2010 IEEE Region 10 Conference (pp. 1986–1991).

  21. IEEE 802.11: IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. ANSI/IEEE Std 802.11, 1999 Edition (R2003) pp. i-513 (1999).

  22. IEEE 802.11e: IEEE Standard for Information technology-Telecommunications and information exchange between systems Local and metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007) pp. 1–2793 (2012). doi:10.1109/IEEESTD.2012.6178212.

  23. IEEE 802.11e: IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999) pp. 1–1076 (2007).

  24. Index, C. V. N. (2013). Global Mobile Data Traffic Forecast Update, 2012–2017, Cisco White Paper. February 6.

  25. Issariyakul, T., & Hossain, E. (2012). Introduction to Network Simulator NS2. Berlin: Springer.

    Book  Google Scholar 

  26. ITU-T: ITU-T Recommendation G.711. (1988). Pulse Code Modulation (PCM) of Voice Frequencies.

  27. Jansang, A., & Phonphoem, A. (2011). Adjustable TXOP mechanism for supporting video transmission in IEEE 802.11e HCCA. EURASIP Journal on Wireless Communications and Networking, 2011(1), 1–16.

    Article  Google Scholar 

  28. Kim, B.-S., Kim, S. W., Fang, Y., & Wong, T. (2005). Two-step multipolling MAC protocol for wireless LANs. IEEE Journal on Selected Areas in Communications, 23(6), 1276–1286.

    Article  Google Scholar 

  29. Koenen, R. (1999). MPEG-4 multimedia for our time. IEEE Spectrum, 36(2), 26–33.

    Article  Google Scholar 

  30. Koenen, R. (2002). Overview of the MPEG-4 Standard. ISO/IEC JTC1/SC29/WG11 N 1730, 11–13.

  31. Lasowski, R., Gschwandtner, F., Scheuermann, C., & Duchon, M. (2011). A multi channel synchronization approach in dual radio vehicular ad-hoc networks. In 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring) (pp. 1–5). IEEE.

  32. Lee, D. Y., Kim, S. R., & Lee, C. W. (2009). An Enhanced EDD QoS Scheduler for IEEE 802.11e WLAN. In Advances in Computational Science and Engineering, Communications in Computer and Information Science (Vol. 28, pp. 45–59). Berlin: Springer.

  33. Lee, T. H., & Huang, Y. W. (2013). Quality of service guarantee for real-time VBR traffic flows with different delay bound and loss probability requirements in WLANs. Journal of the Chinese Institute of Engineers, 36(4), 471–487.

    Article  Google Scholar 

  34. Lo Cigno, R., Palopoli, L., & Colombo, A. (2007). Analysis of different scheduling strategies in 802.11 e networks with multi-class traffic. In 32nd IEEE Conference on Local Computer Networks, 2007. LCN 2007 (pp. 455–462). IEEE.

  35. Mao, G., & Liu, H. (2007). Real time variable bit rate video traffic prediction: Research articles. International Journal of Communication Systems, 20(4), 491–505.

    Article  Google Scholar 

  36. McCanne, S., & Floyd, S. (1995). NS network simulator.

  37. Nasiopoulos, P., & Ward, R. K. (2002). Effective multi-program broadcasting of prerecorded video using VBR MPEG-2 coding. IEEE Transactions on Broadcasting, 48(3), 207–214.

    Article  Google Scholar 

  38. Navarro Ortiz, J., Ameigeiras, P., Ramos Munoz, J. J., & Lopez Soler, J. (2013). Removing redundant TCP functionalities in wired-cum-wireless networks with IEEE 802.11e HCCA support. International Journal of Communication Systems. doi:10.1002/dac.2546.

  39. Rashid, M., Hossain, E., & Bhargava, V. (2008). Controlled channel access scheduling for guaranteed QoS in 802.11e-based WLANs. IEEE Transactions on Wireless Communications, 7(4), 1287–1297.

    Article  Google Scholar 

  40. Ruscelli, A. L., & Cecchetti, G. (2014). A IEEE 802.11 e HCCA scheduler with a reclaiming mechanism for multimedia applications. Advances in Multimedia, 2014, 372693. doi:10.1155/2014/372693.

    Article  Google Scholar 

  41. Ruscelli, A. L., Cecchetti, G., Alifano, A., & Lipari, G. (2012). Enhancement of QoS support of HCCA schedulers using EDCA function in IEEE 802.11e networks. Ad Hoc Networks, 10(2), 147–161.

    Article  Google Scholar 

  42. Ruscelli, A. L., Cecchetti, G., Mastropaolo, A., & Lipari, G. (2011). A greedy reclaiming scheduler for IEEE 802.11 e HCCA real-time networks. In Proceedings of the 14th ACM International Conference on Modeling, Analysis and Simulation ofWireless and Mobile Systems (pp. 223–230). ACM.

  43. Sikora, T. (1997). MPEG digital video-coding standards. IEEE Signal Processing Magazine, 14(5), 82–100.

    Article  Google Scholar 

  44. Soares, L. D., & Pereira, F. (1998). MPEG-4: A flexible coding standard for the emerging mobile multimedia applications. In The Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1998 (Vol. 3, pp. 1335–1339).

  45. Teixeira, M. A., & Guardieiro, P. R. (2013). Adaptive packet scheduling for the uplink traffic in IEEE 802.16e networks. International Journal of Communication Systems, 26(8), 1038–1053. doi:10.1002/dac.1390.

    Article  Google Scholar 

  46. Yong, H., & Xiaojun, M. (2011). Deterministic backoff: Toward efficient polling for IEEE 802.11e HCCA in wireless home networks. IEEE Transactions on Mobile Computing, 10(12), 1726–1740.

    Article  Google Scholar 

  47. Zhang, B., Ma, M-d, Liu, C-f, & Shu, Y-t. (2013). Improvement ofpolling and scheduling scheme for real-time transmission withHCCA of IEEE 802.11p protocol. The Journal of ChinaUniversities of Posts and Telecommunications, 20(3), 60–66.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Malaysian Ministry of High Education under the Fundamental Research Grant Scheme, FRGS/02/01/12/1143/FR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Al-Maqri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Maqri, M.A., Othman, M., Ali, B.M. et al. Adaptive multi-polling scheduler for QoS support of video transmission in IEEE 802.11e WLANs. Telecommun Syst 61, 773–791 (2016). https://doi.org/10.1007/s11235-015-0020-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0020-y

Keywords

Navigation