Advertisement

Telecommunication Systems

, Volume 59, Issue 2, pp 247–270 | Cite as

HDMM: deploying client and network-based distributed mobility management

A hybrid approach
  • Fabio GiustEmail author
  • Carlos J. Bernardos
  • Antonio de la Oliva
Article

Abstract

Mobile operators are now facing the challenges posed by a huge data demand from users, mainly due to the introduction of modern portable devices and the success of mobile applications. Moreover, users are now capable to connect from different access networks and establish several active sessions simultaneously, while being mobile. This triggered the introduction of a new paradigm: the distributed mobility management (DMM) which aims at flattening the network and distributing the entities in charge of managing users’ mobility. In this article, we review existing DMM proposals and describe a hybrid solution which benefits from combining a network-based and a client-based approach. We analyze the signaling cost and the handover latency of our proposal, comparing them with their centralized alternatives. We also include validation and performance results from experiments conducted with a Linux-based prototype, which show that achievable enhancements depend on the underlying network topology. We argue that the proposed hybrid DMM solution provides additional flexibility to the mobile network operators, which can decide when and how to combine these two approaches.

Keywords

Distributed mobility management IP mobility PMIPv6  Wireless systems Address reachability Cellular architecture Handover mechanisms Experimental evaluation 

Notes

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7-ICT-2009-5) under Grant agreement n. 258053 (MEDIEVAL project) and from the Spanish Government, MICINN, under research grant TIN2010-20136-C03.

References

  1. 1.
    3GPP. (2011). General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access. TS 23.401, 3rd Generation Partnership Project (3GPP).Google Scholar
  2. 2.
    3GPP. (2011). LIPA Mobility and SIPTO at the Local Network. TR 23.859, 3rd Generation Partnership Project (3GPP).Google Scholar
  3. 3.
    Ali-Ahmad, H., Ouzzif, M., Bertin, P., & Lagrange, X. (2012). Comparative performance analysis on dynamic mobility anchoring and proxy mobile IPv6. In Personal Multimedia Communications (WPMC), 2012 15th International Symposium on (pp. 653–657).Google Scholar
  4. 4.
    Aura, T. (2005). Cryptographically Generated Addresses (CGA). RFC 3972.Google Scholar
  5. 5.
    Bernardos, C., Zuniga, J., & Reznik, A. (2012). Towards flat and distributed mobility management: a 3GPP evolved network design. In IEEE International Conference on Communications (ICC) (pp. 6855–6861). doi: 10.1109/ICC.2012.6364784.
  6. 6.
    Bertin, P., Bonjour, S., & Bonnin, J. (2009). Distributed or centralized mobility? In IEEE Global Telecommunications Conference, GLOBECOM 2009 (pp. 1–6).Google Scholar
  7. 7.
    Bertin, P., Bonjour, S., & Bonnin, J. M. (2008). A distributed dynamic mobility management scheme designed for flat IP architectures. In New Technologies, Mobility and Security, 2008. NTMS ’08 (pp. 1–5).Google Scholar
  8. 8.
    Bertin, P., Bonjour, S., & Bonnin, J. M. (2009). An evaluation of dynamic mobility anchoring. In IEEE 70th Vehicular Technology Conference Fall (VTC 2009-Fall) (pp. 1–5).Google Scholar
  9. 9.
    Boc, M., Petrescu, A., & Janneteau, C. (2011). Anchor-based routing optimization extension for Proxy Mobile IPv6 in flat architectures. In 14th International Symposium on Wireless Personal Multimedia Communications (WPMC) (pp. 1–5).Google Scholar
  10. 10.
    Chan, H. (2010). Proxy mobile IP with distributed mobility anchors. In: IEEE GLOBECOM Workshops (GC Wkshps) (pp. 16–20). doi: 10.1109/GLOCOMW.2010.5700231.
  11. 11.
    Chan, H. (2012). Distributed mobility management with mobile IP. In IEEE International Conference on Communications (ICC) (pp. 6850–6854) . doi: 10.1109/ICC.2012.6364868.
  12. 12.
    Chan, H. (2012). Requirements for Distributed Mobility Management. Internet-Draft (work in progress), draft-ietf-dmm-requirements-03.txt.Google Scholar
  13. 13.
    Chan, H. A., Yokota, H., Xie, J., Seite, P., & Liu, D. (2011). Distributed and dynamic mobility management in mobile internet: Current approaches and issues. Journal of Communications, 6(1), 4–15.CrossRefGoogle Scholar
  14. 14.
    Corujo, D., Guimaraes, C., Santos, B., & Aguiar, R. (2011). Using an open-source IEEE 802.21 implementation for network-based localized mobility management. IEEE Communications Magazine, 49(9), 114–123.CrossRefGoogle Scholar
  15. 15.
    Devarapalli, V., & Dupont, F. (2007). Mobile IPv6 Operation with IKEv2 and the Revised IPsec Architecture. RFC 4877.Google Scholar
  16. 16.
    Devarapalli, V., Wakikawa, R., Petrescu, A., & Thubert, P. (2005). Network Mobility (NEMO) Basic Support Protocol. RFC 3963.Google Scholar
  17. 17.
    Do, T. X., & Kim, Y. (2012). Distributed network mobility management. In: International Conference on Advanced Technologies for Communications (ATC) (pp. 319–322). doi: 10.1109/ATC.2012.6404284.
  18. 18.
    Ernest, P., & Chan, H. (2011). Enhanced handover support and routing path optimization with distributed mobility management in flattened wireless networks. In 14th International Symposium on Wireless Personal Multimedia Communications (WPMC) (pp. 1–5).Google Scholar
  19. 19.
    Farha, R., Khavari, K., Abji, N., & Leon-Garcia, A. (2006). Peer-to-Peer mobility management for all-IP networks. In: IEEE International Conference on Communications, ICC’06, 5, (pp. 1946–1952).Google Scholar
  20. 20.
    Farinacci, D., Fuller, V., Meyer, D., & Lewis, D. (2013). The Locator/ID Separation Protocol (LISP). RFC 6830.Google Scholar
  21. 21.
    Fischer, M., Andersen, F. U., Kopsel, A., Schafer, G., & Schlager, M. (2008). A Distributed IP Mobility Approach for 3G SAE. In: IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2008. (pp. 1–6). doi: 10.1109/PIMRC.2008.4699735.
  22. 22.
    García-Martínez, A., Bagnulo, M., & Van Beijnum, I. (2010). The Shim6 architecture for IPv6 multihoming. IEEE Communications Magazine, 48(9), 152–157.CrossRefGoogle Scholar
  23. 23.
    Giust, F., Bernardos, C., Figueiredo, S., Neves, P., & Melia, T. (2011). A hybrid MIPv6 and PMIPv6 distributed mobility management: The MEDIEVAL approach. In: IEEE Symposium on Computers and Communications (ISCC) (pp. 25–30).Google Scholar
  24. 24.
    Giust, F., de la Oliva, A., & Bernardos, C. J. (2011). Flat access and mobility architecture: An IPv6 distributed client mobility management solution. In: IEEE INFOCOM MobiWorld Workshop (pp. 361–366).Google Scholar
  25. 25.
    Giust, F., de la Oliva, A., Bernardos, C., & Da Costa, R. (2011). A network-based localized mobility solution for distributed mobility management. In 14th International Symposium on Wireless Personal Multimedia Communications (WPMC) (pp. 1–5).Google Scholar
  26. 26.
    Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., & Patil, B. (2008). Proxy Mobile IPv6. RFC 5213.Google Scholar
  27. 27.
    Gurtov, A., Komu, M., & Moskowitz, R. (2009). Host identity protocol: Identifier/locator split for host mobility and multihoming. Internet Protocol Journal, 12(1), 27–32.Google Scholar
  28. 28.
    Hahn, W. (2011). 3GPP Evolved Packet Core support for distributed mobility anchors: Control enhancements for GW relocation. In: IEEE 11th International Conference on ITS Telecommunications (ITST) (pp. 264–267).Google Scholar
  29. 29.
    Hahn, W. (2011). Flat 3GPP Evolved Packet Core. In 14th International Symposium on Wireless Personal Multimedia Communications (WPMC) (pp. 1–5).Google Scholar
  30. 30.
    Hossain, M., & Atiquzzaman, M. (2011). Cost analysis of mobility protocols. Telecommunication Systems, 15, 1–15.Google Scholar
  31. 31.
    ITU-T, R., Recommend, I. (2000). G. 114. One-way transmission time 18.Google Scholar
  32. 32.
    Jung, H., Gohar, M., Kim, J., & Koh, S. (2011). Distributed mobility control in Proxy Mobile IPv6 networks. IEICE Transactions on Communications, 94(8), 2216.CrossRefGoogle Scholar
  33. 33.
    Kafle, V., Kobari, Y., & Inoue, M. (2011). A Distributed Mobility Management scheme for future networks. In: Proceedings of ITU Kaleidoscope 2011: The Fully Networked Human? - Innovations for Future Networks and Services (K-2011) (pp. 1–7).Google Scholar
  34. 34.
    Knoblauch, R., Pietrucha, M., & Nitzburg, M. (1996). Field studies of pedestrian walking speed and start-up time. Transportation Research Record: Journal of the Transportation Research Board, 1538, 27–38.CrossRefGoogle Scholar
  35. 35.
    Koodli, R. (2008). Mobile IPv6 Fast Handovers. RFC 5268.Google Scholar
  36. 36.
    Laganier, J. (2010). Authorizing Mobile IPv6 Binding Update with Cryptographically Generated Addresses. Internet-Draft (work in progress), draft-laganier-mext-cga-01.txt.Google Scholar
  37. 37.
    LAN/MAN Committee of the IEEE Computer Society (2008). IEEE Std 802.21-2008, Standards for Local and Metropolitan Area—Part 21: Media Independent Handover Services.Google Scholar
  38. 38.
    Lee, J. H., Han, Y. H., Gundavelli, S., & Chung, T. M. (2009). A comparative performance analysis on Hierarchical Mobile IPv6 and Proxy Mobile IPv6. Telecommunication Systems, 41(4), 279–292.CrossRefGoogle Scholar
  39. 39.
    Lee, K. H., Lee, H. W., Ryu, W., & Han, Y. H. (2011). A scalable network-based mobility management framework in heterogeneous ip-based networks. Telecommunication Systems, 1–14.Google Scholar
  40. 40.
    Li, C. S., Lin, F., & Chao, H. C. (2009). Routing optimization over network mobility with distributed home agents as the cross layer consideration. Telecommunication Systems, 42(1–2), 63–76.CrossRefGoogle Scholar
  41. 41.
    Liu, D., an P. Seite, J. C. Z., Chan, H., & Bernardos, C. J. (2013). Distributed Mobility Management: Current practices and gap analysis. Internet-Draft (work in progress), draft-ietf-dmm-best-practices-gap-analysis-00.txt.Google Scholar
  42. 42.
    Liu, M., Guo, X., Zhou, A., Wang, S., Li, Z., & Dutkiewicz, E. (2011). Low latency IP mobility management: Protocol and analysis. EURASIP Journal on Wireless Communications and Networking, 2011(1), 1–16.CrossRefGoogle Scholar
  43. 43.
    Louin, P., & Bertin, P. (2011). Network and host based distributed mobility. In 14th International Symposium on Wireless Personal Multimedia Communications (WPMC) (pp. 1–5).Google Scholar
  44. 44.
    McCann, P. (2011). Design of a flat wireless Internet Service Provider network. In 14th International Symposium on Wireless Personal Multimedia Communications (WPMC) (pp. 1–5).Google Scholar
  45. 45.
    Narten, T., Nordmark, E., Simpson, W., & Soliman, H. (2007). Neighbor Discovery for IP version 6 (IPv6). RFC 4861.Google Scholar
  46. 46.
    Noll, A. (1996). Cybernetwork technology: Issues and uncertainties. Communications of the ACM, 39(12), 27–31.CrossRefGoogle Scholar
  47. 47.
    Perkins, C., Johnson, D., & Arkko, J. (2011). Mobility Support in IPv6. RFC 6275.Google Scholar
  48. 48.
    Seite, P., & Bertin, P. (2013). Distributed Mobility Anchoring. Internet-Draft (work in progress), draft-seite-dmm-dma-06.txt.Google Scholar
  49. 49.
    Skorepa, M., & Klugl, R. (2011). Enhanced analytical method for IP mobility handover schemes cost evaluation. Telecommunication Systems, 1–10.Google Scholar
  50. 50.
    Tsirtsis, G., Soliman, H., Montavont, N., Giaretta, G., & Kuladinithi, K. (2011). Flow Bindings in Mobile IPv6 and Network Mobility (NEMO) Basic Support. RFC 6089.Google Scholar
  51. 51.
    Wakikawa, R., Devarapalli, V., Tsirtsis, G., Ernst, T., & ami, K. N. (2009). Multiple Care-of Addresses Registration. RFC 5648 (Proposed Standard).Google Scholar
  52. 52.
    Wakikawa, R., Valadon, G., & Murai, J. Migrating home agents towards internet-scale mobility deployments. In Proceedings of the 2006 ACM CoNEXT conference.Google Scholar
  53. 53.
    Xue, K., Li, L., Hong, P., & McCann, P. (2012). Routing optimization in DMM. Internet-Draft (work in progress), draft-xue-dmm-routing-optimization-01.txt.Google Scholar
  54. 54.
    Yi, L., Zhou, H., Huang, D., & Zhang, H. (2013). D-PMIPv6: A distributed mobility management scheme supported by data and control plane separation. Mathematical and Computer Modelling, 58(5–6), 1415–1426.Google Scholar
  55. 55.
    Yokota, H., Seite, P., Demaria, E., & Cao, Z. (2010). Use case scenarios for Distributed Mobility Management. Internet-Draft (work in progress), draft-yokota-dmm-scenario-00.txt.Google Scholar
  56. 56.
    Yu, L., Zhijun, Z., Tao, L., & Hui, T. (2010). Distributed Mobility Management Based on Flat Network Architecture. In The 5th Annual ICST Wireless Internet Conference (WICON) (pp. 1–6).Google Scholar
  57. 57.
    Zhai, Y., Wang, Y., You, I., Yuan, J., Ren, Y., & Shan, X. (2011). A DHT and MDP-based mobility management scheme for large-scale mobile internet. In: IEEE INFOCOM MobiWorld Workshop (pp. 379–384).Google Scholar
  58. 58.
    Zhang, H., Qiu, F., Zhou, H., Li, X., & Song, F. (2012). A Distributed Mobility Management Solution in LISP networks. Internet-Draft (work in progress), draft-zhang-dmm-lisp-00.txt.Google Scholar
  59. 59.
    Zuniga, J., Bernardos, C., de la Oliva, A., Costa, R., & Reznik, A. (2013). Distributed Mobility Management: A Standards Landscape. Communications Magazine 51.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fabio Giust
    • 1
    Email author
  • Carlos J. Bernardos
    • 2
  • Antonio de la Oliva
    • 2
  1. 1.Institute IMDEA NetworksUniversity Carlos III of MadridLeganésSpain
  2. 2.University Carlos III of MadridLeganésSpain

Personalised recommendations