Analysis of the BMAP/G/1 queue with gated service and adaptive vacations duration

Abstract

We consider a BMAP/G/1 type queueing model with gated service and duration of vacations depending on how many times in turn the system was empty at the previous vacation completion moments. We compute stationary distributions of the queue length at the embedded moments (vacation completions) and at arbitrary time as well as of a customer waiting time. The results of our analysis can be useful for determining strategy of adaptive choosing duration of sleep periods, e.g., in mobile networks where power consumption is an important issue.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Abbas, C. B., Gonzlez, R., Cardenas, N., & Villalba, L. J. G. (2008). A proposal of a wireless sensor network routing protocol. Telecommunication Systems, 38, 61–68.

    Article  Google Scholar 

  2. 2.

    Baek, S., Son, J. J., & Choi, B. D. (2011). Performance analysis of Push-To-Talk over IEEE 802.16e with sleep mode and idle mode. Telecommunication Systems, 47(3–4), 291–302.

    Article  Google Scholar 

  3. 3.

    Chakravarthy, S. R. (2001). The batch Markovian arrival process: A review and future work. In A. Krishnamoorthy, et al. (Eds.), Advances in probability theory and stochastic process: Proc (pp. 21–49). Branchburg, NJ: Notable Publications.

    Google Scholar 

  4. 4.

    Cinlar, E. (1975). Introduction to stochastic process. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  5. 5.

    Heyman, D. P., & Lucantoni, D. (2003). Modelling multiple IP traffic streams with rate limits. IEEE/ACM Transactions on Networking, 11, 948–958.

    Article  Google Scholar 

  6. 6.

    Hurni, P., Braun, T., & Anwander, M. (2010). Evaluation of WiseMAC and extensions on wireless sensor nodes. Telecommunication Systems, 43, 49–58.

    Article  Google Scholar 

  7. 7.

    Hwang, E., Kim, K. J., Lyakhov, A., & Choi, B. D. (2012). Performance analysis of bandwidth requests under unicast, multicast and broadcast pollings in IEEE 802.16d/e. Telecommunication Systems, 50(1), 15–30.

    Article  Google Scholar 

  8. 8.

    Kesten, H., & Runnenburg, J Th. (1956). Priority in waiting line problems. Amsterdam: Mathematisch Centrum.

    Google Scholar 

  9. 9.

    Khan, B. M., & Ali, F. H. (2013). Collision Free Mobility Adaptive (CFMA) MAC for wireless sensor networks. Telecommunication Systems, 52(4), 2459–2474.

    Article  Google Scholar 

  10. 10.

    Klemm, A., Lindermann, C., & Lohmann, M. (2003). Modelling IP traffic using the batch Markovian arrival process. Performance Evaluation, 54, 149–173.

    Article  Google Scholar 

  11. 11.

    Lucantoni, D. M. (1991). New results on the single server queue with a batch Markovian arrival process. Communications in Statistics-Stochastic Models, 7, 1–46.

    Article  Google Scholar 

  12. 12.

    Lucantoni, D. M., & Neuts, M. F. (1994). Some steady-state distribution for the MAP/SM/1 queue. Communications in Statistics-Stochastic Models, 10, 575–598.

    Article  Google Scholar 

  13. 13.

    Mann, C. R., Baldwin, R. O., Kharoufeh, J. P., & Mullins, B. E. (2007). A trajectory-based selective broadcast query protocol for large-scale, high-density wireless sensor networks. Telecommunication Systems, 35, 67–86.

    Article  Google Scholar 

  14. 14.

    Neuts, M. F. (1989). Structured stochastic matrices of M/G/1 type and their applications. New York: Marcel Dekker.

    Google Scholar 

  15. 15.

    Saffer, Z., & Telek, M. (2010). Analysis of BMAP vacation queue and its application to IEEE 802.16e sleep mode. Journal of Industrial and Management Optimization, 6(3), 661–690.

    Article  Google Scholar 

  16. 16.

    Takagi, H. (1991). Queueing analysis: A foundation of performance evaluation (Vol. 1). New York, NY: North-Holland.

    Google Scholar 

  17. 17.

    Turck, K. D., Vuyst, S. D., Fiems, D., & Wittevrongel, S. (2008). Performance analysis of the IEEE 802.16e sleep mode for correlated downlink traffic. Telecommunication Systems, 39, 145–156.

    Article  Google Scholar 

  18. 18.

    van Danzig, D. (1955). Chaines de Markof dans les ensembles abstraits et applications aux processus avec regions absorbantes et au probleme des boucles. Ann. de l’Inst. H. Poincare, 14(fasc. 3), 145–199.

  19. 19.

    Vishnevskii, V. M., Lakontsev, D. V., Semenova, O. V., & Shpilev, S. A. (2006). Polling model for investigation of the broadband wireless networks. Automation and Remote Control, 67, 1974–1995.

    Article  Google Scholar 

  20. 20.

    Vishnevsky, V., Dudin, A., Klimenok, V., Semenova, O., & Shpilev, S. (2012). Approximate method to study M/G/1-type polling system with adaptive polling mechanism. Quality Technology & Quantitative Management, 9, 211–228.

    Google Scholar 

  21. 21.

    Vishnevsky, V. M., Dudin, A. N., Semenova, O. V., & Klimenok, V. I. (2011). Performance analysis of the BMAP/G/1 queue with gated servicing and adaptive vacations. Performance Evaluation, 68, 446–462.

    Article  Google Scholar 

  22. 22.

    Vishnevsky, V., Semenova, O. Dudin, A., Klimenok, V. (2009). Queueing model with gated service and adaptive vacations. In IEEE International Conference on Communications Workshops, ICC-2009 14–18 June, Dresden, Germany.

Download references

Acknowledgments

The research is supported by the Russian Foundation for Basic Research (grant no. 14-07-90015) and the Belarusian Republican Foundation for Fundamental Research (grant no. F14R-126).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Dudin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dudin, A.N., Vishnevsky, V.M. & Sinjugina, J.V. Analysis of the BMAP/G/1 queue with gated service and adaptive vacations duration. Telecommun Syst 61, 403–415 (2016). https://doi.org/10.1007/s11235-014-9946-8

Download citation

Keywords

  • Performance
  • Queues applications
  • Queues theory
  • Telecommunications