Skip to main content

Advertisement

Log in

On energy-balanced resource scheduling policy optimality for QoS assurance in multi-hop wireless multimedia networks

Wireless Multi-hop Energy Balancing

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Energy balancing is an essential issue for scenarios of multi-hop wireless networks powered by batteries, for example, in disaster relief applications. In this paper, we propose a new transmission scheduling policy to extend the lifetime of a linear chain topology based multi-hop wireless multimedia network by maximizing the energy-balancing between routers. Two error-control techniques, Forward Error Correction and Automatic Repeat reQuest (ARQ), are adaptively deployed by the proposed strategy to achieve the maximal energy-balancing with the minimal quality requirement constraint. By considering the energy-balancing and the lower bound of multimedia quality constraint, the optimal channel coding redundancy and the optimal ARQ data retransmission strategy are applied to multimedia packets when those packets pass through each router in data transmission. To reduce the computing complexity, we simplify the solution by grouping multimedia packets with similar quality contribution, separating the global quality requirement into multiple local quality requirements, and allocating the optimal local quality requirement to each multimedia packet group. The simulation results show the proposed approach can significantly improve energy-balancing and lifetime of the multi-hop wireless multimedia network in both linear chain topology and more complex topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tang, X., & Xu, J. (2006). Extending network lifetime for precision-constrained data aggregation in wireless sensor networks. In: Proceedings IEEE INFOCOM, Barcelona, Spain

  2. Fattah, H. & Leung, C. (2002). An overview of scheduling algorithms in wireless multimedia networks. IEEE Wireless Communications, pp. 76–83.

  3. Mastronarde, N., & Turaga, D. S. (2007). Collaborative resource exchange for peer-to-peer video streaming over wireless mesh networks. IEEE Journal on Selected Areas in Communications, 25, 108–118.

    Article  Google Scholar 

  4. Hamdaoui, B., & Ramanathan, P. (2007). Cross-layer optimized conditions for QoS support in multi-hop wireless networks with MIMO links. IEEE Journal on Selected Areas in Communications, 25(4), 667–677.

    Article  Google Scholar 

  5. Kompella, S., Mao, S., Hou, Y. T., & Sherali, H. D. (2007). Cross-layer optimized multipath routing for video communications in wireless networks. IEEE Journal on Selected Areas in Communications, 25(4), 831–840.

    Article  Google Scholar 

  6. Kompella, S., Mao, S., Hou, Y. T., & Sherali, H. D. (2009). On path selection and rate allocation for video in wireless mesh networks. IEEE/ACM Transactions on Networking, 17(1), 212–224.

    Article  Google Scholar 

  7. Andreopoulos, Y., Mastronarde, N., & Schaar, Mvd. (2006). Cross-layer optimized video streaming over wireless multihop mesh networks. IEEE Journal on Selected Areas in Communications, 24(11), 2104–2115.

    Article  Google Scholar 

  8. Tong, X., Andreopoulos, Y., & Schaar, Mvd. (2007). Distortion-driven video streaming over multihop wireless networks with path diversity. IEEE Transactions Mobile Computing, 6(12), 1343–1356.

    Article  Google Scholar 

  9. Zhou, L., Wang, X., Tu, W., Muntean, G.-M., & Geller, B. (2010). Distributed scheduling scheme for video streaming over multi-channel multi-radio multi-hop wireless networks. IEEE Journal on Selected Areas in Communications, 28(3), 409–419.

    Article  Google Scholar 

  10. Shiang, H.-P., & Schaar, Mvd. (2007). Informationally decentralized video streaming over multi-hop wireless networks. IEEE Transactions Multimedia, 9(6), 1299–1313.

    Article  Google Scholar 

  11. Shiang, H.-P., & Schaar, Mvd. (2007). Multi-user video streaming over multi-hop wireless networks: A distributed, cross-layer approach based on priority queuing. IEEE Journal on Selected Areas in Communications, 25(4), 770–785.

    Article  Google Scholar 

  12. Wu, K.-D. & Liao, W. (2009). On service differentiation for multimedia traffic in multi-hop wireless networks. IEEE Trans. Wireless Commun., vol. 8, no. 5.

  13. Zhou, L., Wang, X., Li, Y., Zheng, B., & Geller, B. (2009). Optimal scheduling for multiple description video streams in wireless multihop networks. IEEE Communications Letters, 13(7), 534–536.

    Article  Google Scholar 

  14. Zhou, L., Geller, B., Zheng, B., Wei, A., & Cui, J. (2009). System scheduling for multi-description video streaming over wireless multi-hop networks. IEEE Transactions on Broadcasting, 554, 731–741.

  15. Zhou, L., Chao, H.-C., & Vasilakos, A. (2011). Joint forensics-scheduling strategy for delay-sensitive multimedia applications over heterogeneous networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358–1367.

  16. Zhou, L., & Chen, H.-H. (2011). On distributed multimedia scheduling with constrained control channels. IEEE Transactions on Multimedia, 13(5), 1040–1051.

    Article  Google Scholar 

  17. Phan, K. T., Jiang, H., Tellambura, C., Vorobyov, S. A., & Fan, R. (2008). Joint medium access control, routing and energy distribution in multi-hop wireless networks. IEEE Transactions Wireless Communications, 7(12), 5244–5249.

    Article  Google Scholar 

  18. Cao, M., Wang, X., Kim, S.-J., & Madihian, M. (2007). Multi-hop wireless backhaul networks: A cross-layer design paradigm. IEEE Journal on Selected Areas in Communications, 25(4), 738–748.

    Article  Google Scholar 

  19. Goudarzi, P., & Qaratlu, M. M. (2010). Optimal rate allocation for video transmission over wireless Ad hoc networks. IEEE Multimedia, 17(1), 44–55.

    Article  Google Scholar 

  20. Hu, D., & Mao, S. (2010). Streaming scalable videos over multi-hop cognitive radio networks. IEEE Transactions on Wireless Communications, 9(11), 3501–3511.

    Article  Google Scholar 

  21. Aguilar Igartua, M., Carrascal Fras, V., de la Cruz Llopis, Luis J., & Gargallo, Emilio Sanvicente. (2012). Dynamic framework with adaptive contention window and multipath routing for video-streaming services over mobile ad hoc networks. Telecommunication Systems, 49(4), 379–390.

    Article  Google Scholar 

  22. Eiger, M., Luss, H., & Shallcross, D. (2012). Network restoration under dual failures using path-protecting preconfigured cycles. Telecommunication Systems, 49(3), 271–286.

    Article  Google Scholar 

  23. Gardikis, G., Xilouris, G., Pallis, E., & Kourtis, A. (2012). Joint assessment of network- and perceived-QoS in video delivery networks. Telecommunication Systems, 49(1), 75–84.

    Article  Google Scholar 

  24. Xing, L., Wang, W., Zhang, G., Gao, F., Liao, X. & Jiang, T. (2011). Quality-assured energy balancing for multi-hop wireless multimedia networks via 2-D channel coding rate allocation. In: Proc. ACM Research in Applied Computation Symposium (RACS), pp. 141–145.

  25. Ohuchi, K., Wada, T., Okada, H. & Saito, M. (2007). Proposal of an iterative channel information estimation scheme on multi-hop networks. In: Proceedings Communications and Signal Processing.

  26. van der Schaar, M., & Turaga, D. (2007). Cross-layer packetization and retransmission strategies for delay-sensitive wireless multimedia transmission. IEEE Transactions on Multimedia, 9(1), 185–197.

    Article  Google Scholar 

  27. Taubman, D. (2000). High performance scalable image compression with EBCOT. IEEE Transactions on Image Processing, 9(7), 1158–1170.

    Article  Google Scholar 

  28. Wang, W. & Shin, S. (2010). A new green scheduling approach to maximize wireless multimedia networking lifetime via packet and path diversity. In: Proc. ACM Reliable and Autonomous Computational Science, pp. 167–180.

  29. Xing, L., Wang, W., Wu, S., Hua, K. & Wang, H. (2011). An energy-balanced coding redundancy scheduling approach to support quality of service in battery-powered multi-hop wireless networks. In: Proc. the 44th Annual Simulation Symposium (ANSS).

  30. Sklar, B. (2001). Digital Communications (2nd ed.). Englewood Cliffs: Prentice Hall.

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by National Science Foundation Grants No. 1463768 and No. 1423192 on energy efficient wireless multimedia communications, and startup grant in Dept. of Computer Science at Texas Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, L., Wang, W., Lim, S. et al. On energy-balanced resource scheduling policy optimality for QoS assurance in multi-hop wireless multimedia networks. Telecommun Syst 60, 187–198 (2015). https://doi.org/10.1007/s11235-014-9933-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9933-0

Keywords

Navigation