Skip to main content
Log in

MAC layer handover mechanism for continuous communication support in healthcare mobile wireless sensor networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The use of wireless sensor networks (WSNs) is growing up in the last few years. Therefore, new challenges arise every day and one of the emerging challenges in WSNs is the nodes mobility support. This feature increases the application areas of these technologies but also raises new challenges to solve. This paper proposes a new handover mechanism, called Hand4MAC (Handover mechanism for MAC layer supporting continuous communication in mobile wireless sensor networks), to deal with body sensors mobility in scenarios where patients are hospitalized. This approach tries to provide continuous monitoring and communication with these sensor nodes when they move across different access points wireless coverage range. The proposed method for medium access control (MAC) layer considers that nodes remain within the same network. The evaluation study of the proposed algorithm was performed by simulation and evaluated in comparison with the well-known RSSI-based handover algorithm. It was concluded that Hand4MAC performs better and reveals promising results for real deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fowler, K. (2009). Sensor survey: Part 1 the current state of sensors and sensor networks. IEEE Instrumentation & Measurement Magazine, 12(1), 39–44. doi:10.1109/MIM.2009.4762952.

    Article  Google Scholar 

  2. Alemdar, H., & Ersoy, C. (2010). Wireless sensor networks for healthcare: A survey. Computer Networks, Elsevier, 54(15), 2688–2710. doi:10.1016/j.comnet.2010.05.003.

    Article  Google Scholar 

  3. Garcia, J. F. R., Caldeira, J. M. L. P., & Rodrigues, J. J. P. C. (2010). Wireless body sensor design for intra-vaginal temperature monitoring. In Fifth international conference on body area networks (BodyNets 2010). Corfu Island.

  4. Seah, W. K. G., Eu, Z. A., & Tan, H.-P. (2009). Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP) - Survey and challenges. In 1st international conference on wireless communication, vehicular technology, information theory and aerospace & electronic systems technology (Wireless VITAE 2009), Aalborg (pp. 1–5). doi:10.1109/WIRELESSVITAE.2009.5172411.

  5. Zhou, L., Wang, X., Tu, W., Mutean, G., & Geller, B. (2010). Distributed scheduling scheme for video streaming over multi-channel multi-radio multi-hop wireless networks. IEEE Journal on Selected Areas in Communications, 28(3), 409–419.

    Article  Google Scholar 

  6. Murty, R. N., Mainl, G., Rose, I., Chowdhury, A. R., Gosain, A., Bers, J., & Welsh, M. (2008). Citysense: An urban-scale wireless sensor network and testbed. In IEEE international conference on technologies for homeland security (2008), Boston (pp. 583–588).

  7. Sahin, Y. G. (2007). Animals as mobile biological sensors for forest fire detection. Sensors for Disaster and Emergency Management Decision Making, Sensors, 7(12), 3084–3099.

    Google Scholar 

  8. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, Elsevier, 38(4), 393–422. doi:10.1016/S1389-1286(01)00302-4.

    Article  Google Scholar 

  9. Francesco, M. D., Das, S. K., & Anastasi, G. (2011). Data collection in wireless sensor networks with mobile elements: A survey. Transactions on Sensor Networks, ACM, 8(1), 7.1–7.31. doi:10.1145/1993042.1993049.

    Article  Google Scholar 

  10. Ghassemian, M., & Aghvami, H. (2008). An investigation of the impact of mobility on the protocol performance in wireless sensor networks. In 24th biennial symposium on communications (BSC 2008) (pp. 310–315). doi:10.1109/BSC.2008.4563264.

  11. Lambrou, T. P., & Panayiotou, C. G. (2009). A survey on routing techniques supporting mobility in sensor networks. In 5th international conference on mobile ad-hoc and sensor networks (MSN 2009), Fujian (pp. 78–85). doi:10.1109/MSN.2009.37.

  12. Amundson, I., & Koutsoukos, X. D. (2009). A Survey on Localization for Mobile Wireless Sensor Networks. In 2nd international workshop on mobile entity localization and tracking in GPS-less environments (MELT. (2009), Orlando, FL.

  13. Natalizio, E., & Loscrí, V. (2011). Controlled mobility in mobile sensor networks: advantages, issues and challenges. Telecommunication Systems, Springer, 52(4), 1–8. doi:10.1007/s11235-011-9561-x.

  14. Zhou, L., Chao, H.-C., & Vasilakos, A. (2011). Joint forensics-scheduling strategy for delay-sensitive multimedia applications over heterogeneous networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358–1367.

    Article  Google Scholar 

  15. Mulligan, R., & Ammari, H. M. (2010). Coverage in wireless sensor networks: A survey. Network Protocols and Algorithms, Macrothink Institute, 2(2), 27–53. doi:10.5296/npa.v2i2.276.

    Google Scholar 

  16. Sadiq, A. S., Bakar, K. A., & Ghafoor, K. Z. (2010). A fuzzy logic approach for reducing handover latency in wireless networks. Network Protocols and Algorithms, Macrothink Institute, 2(4), 61–87.

    Google Scholar 

  17. Zinonos, Z., & Vassiliou, V. (2010). Inter-mobility support in controlled 6LoWPAN networks. In IEEE GLOBECOM Workshops (GC Workshops 2010), Miami, FL (pp. 1718–1723). doi:10.1109/GLOCOMW.2010.5700235.

  18. Fotouhi, H., Alves, M., Koubaa, A., & Baccou, N. (2010). On a reliable handoff procedure for supporting mobility in wireless sensor networks. In The 9th international workshop on real-time networks (RTN 2010) in conjunction with the 22nd euromicro international conference on real-time systems (ECRTS 2010), Brussels.

  19. Jara, A. J., Zamora, M. A., & Skarmeta, A. F. G. (2010). An initial approach to support mobility in hospital wireless sensor networks based on 6LoWPAN (HWSN6). Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 1(2/3), 107–122.

    Google Scholar 

  20. Petajajarvi, J., & Karvonen, H. (2011). Soft handover method for mobile wireless sensor networks based on 6LoWPAN. In International conference on distributed computing in sensor systems and workshops (DCOSS 2011), Barcelona (pp. 1–6). doi:10.1109/DCOSS.2011.5982208.

  21. Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based wireless sensor networks. Telecommunication Systems, Springer. doi:10.1007/s11235-011-9568-3.

  22. Zhou, L., & Chen, H.-H. (2011). On multimedia scheduling with constrained control channels. IEEE Transactions on Multimedia, 13(5), 1040–1051.

    Article  Google Scholar 

  23. Caldeira, J. M. L. P., Rodrigues, J. J. P. C., & Lorenz, P. (2012). Toward ubiquitous mobility solutions for body sensor networks on healthCare. IEEE Communications Magazine, 50(5), 108–115. doi:10.1109/MCOM.2012.6194390.

    Article  Google Scholar 

  24. Pantelopoulos, A., & Bourbakis, N. G. (2010). A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 40(1), 1–12. doi:10.1109/TSMCC.2009.2032660.

    Article  Google Scholar 

  25. Bradai, N., Chaari, L., & Kamou, L. (2011). A comprehensive overview of wireless body area networks (WBAn). International Journal of E-Health and Medical Communications, IGI Global, 2(3), 1–30. doi:10.4018/jehmc.2011070101.

    Article  Google Scholar 

  26. Chaari, L., & Kamoun, L. (2011). QoS concepts and architecture over wireless body area networks for healthcare applications. International Journal of E-Health and Medical Communications, IGI Global, 2(4), 50–66. doi:10.4018/jehmc.2011100104.

    Article  Google Scholar 

  27. IEEE\_Std\_802.15.4-2006. (2006). IEEE Standard for Information technology–Telecommunications and information exchange between systems–Local and metropolitan area networks–Specific requirements–Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs).

  28. Salman, N., Rasool, I., & Kemp, A. H. (2010). Overview of the IEEE 802.15.4 standards family for Low Rate Wireless Personal Area Networks. In 7th international symposium on wireless communication systems (ISWCS 2010), New York (pp. 701–705). doi:10.1109/ISWCS.2010.5624516.

  29. Shelby, Z., Chakrabarti, S., & Nordmark, E. (2011). Neighbor discovery optimization for low power and lossy networks (6LoWPAN). draft-ietf-6lowpan-nd-18 (work in progress).

  30. Silva, R. M., Silva, J. S., Caldeira, J. M. L. P., & Rodrigues, J. J. P. C. (2011). Mobile multimedia in wireless sensor networks. International Journal of Sensor Networks (IJSNet) Special Issue on Multimedia Data Applications in Wireless Sensor Networks, InderScience Publishers, 11(1), 3–9. doi:10.1504/IJSNET.2012.045035. (InderScience Publishers).

    Google Scholar 

  31. Ko, J., Terzis, A., Dawson-Haggerty, S., Culler, D. E., Hui, J. W., & Levis, P. (2011). Connecting low-power and lossy networks to the internet. IEEE Communications Magazine, 49(4), 96–101. doi:10.1109/MCOM.2011.5741163.

    Article  Google Scholar 

  32. “Texas Instruments/Chipcon - CC2420”. [Online]. (Jan. 2012). Available: http://focus.ti.com/docs/prod/folders/print/cc2420.html.

  33. Caldeira, J. M. L. P., Rodrigues, J. J. P. C., Garcia, J. F. R., & Torre, Idl. (2010). A new wireless biosensor for intra-vaginal temperature monitoring. Sensors, MDPI, 10(11), 10314–10327. doi:10.3390/s101110314.

    Article  Google Scholar 

  34. OMNeT++. [Online]. (Jan. 2012). Available: http://www.omnetpp.org/.

  35. MiXiM. [Online]. (Jan. 2012). Available: http://mixim.sourceforge.net/.

  36. Rousselot, J., Decotignie, J. D., Aoun, M., van der Stok, P., Oliver, R. S., & Fohler, G. (2009). Accurate timeliness simulations for real-time wireless sensor networks. In Third UKSim European symposium on computer modeling and simulation, 2009 (EMS 2009), Athens (pp. 476–481). doi:10.1109/EMS.2009.34.

  37. Schriber, T. J., & Andrews, R. W. (1979). Interactive analysis of simulation output by the method of batch means. In Proceedings of 11th conference on winter simulation (WSC 1979) (Vol. 2, pp. 513–526). San Diego, CA: IEEE Press.

Download references

Acknowledgments

This work was partially supported by the Instituto de Telcomunicações, Next Generation Networks and Applications Group (NetGNA), Portugal, by Luso-French Program of Integrated University Actions (PAUILF 2010)–Action No. F-CT-10/10, by Government of Russian Federation, Grant 074-U01, by National Funding from the FCT—Fundação para a Ciência e a Tecnologia through the Pest-OE/EEI/LA0008/2013 Project, and by the AAL4ALL (Ambient Assisted Living for All), Project co-financed by COMPETE under FEDER via QREN Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel J. P. C. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caldeira, J.M.L.P., Rodrigues, J.J.P.C. & Lorenz, P. MAC layer handover mechanism for continuous communication support in healthcare mobile wireless sensor networks. Telecommun Syst 60, 119–132 (2015). https://doi.org/10.1007/s11235-014-9926-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9926-z

Keywords

Navigation