Skip to main content
Log in

Optically reconfigurable Sierpinski fractal antennas for RoF based communication systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

An Erratum to this article was published on 07 January 2015

Abstract

In this paper, the frequency reconfigurability of the Sierpinski fractal antenna is studied by using doped silicon optical switches. Selecting the optical switches as a reconfiguration tool makes the antenna more suitable for radio over fiber based communication systems since the necessary optical tools have already been settled for communication. Findings prove the multiband reconfigurability property of the proposed antenna which is an important issue for the emerging communication standards such as cognitive radio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Baliarda, C. P., Romeu, J., Pous, R., Garcia, X., & Benitez, F. (1996). Fractal multiband antenna based on the Sierpinski gasket. IET Electronics Letters, 32, 1–2.

    Article  Google Scholar 

  2. Baliarda, C. P., Romeu, J., Pous, R., & Cardama, A. (1998). On the behavior of the Sierpinski multiband fractal antenna. IEEE Transactions on Antennas and Propagation, 46, 517–524.

    Article  Google Scholar 

  3. Baliarda, C. P., Borau, C. B., Rodero, M. N., & Robert, J. R. (2000). An iterative model for fractal antennas application to the Sierpinski gasket antenna. IEEE Transactions on Antennas and Propagation, 48, 517–524.

    Google Scholar 

  4. Werner, D. H., & Yeo, J. (2001). A novel design approach for small dual-band Sierpinski gasket monopole antennas. IEEE International Symposium on Antennas and Propagation Society, vol. 3 (pp. 632–635).

  5. Tsachtsiris, G. F., Constantine, F. S., Karaboikis, M. P., & Makios, V. T. (2004). Senior Member, IEEE. Analysis of a modified Sierpinski gasket monopole antenna printed on dual band wireless devices, vol. 46 (pp. 2571–2579).

  6. Azim, R., Islam, M. T., & Misran, N. (2011). Printed circular disc compact planar antenna for UWB applications. Telecommunication Systems, 52(2), 1171–1177.

    Google Scholar 

  7. Vidal, B. M., & Radia, Z. (2008). Synthesizing Sierpinski antenna by genetic algorithm and swarm optimization. Radioengineering, 17(4), 25–29.

    Google Scholar 

  8. Zhou, B., Rhee, W., Kim, D., & Wang, Z. (2011). Reconfigurable FM-UWB transmitter design for robust short range communications. Telecommunication Systems, 52(2), 1133–1144.

    Google Scholar 

  9. Hwang, K. C. (2007). A modified Sierpinski fractal antenna for multiband application. IEEE Antennas Wireless Propagation Letters, 6, 357–360.

    Article  Google Scholar 

  10. Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine, 45, 38–57.

    Article  Google Scholar 

  11. Brown, E. R. (1998). RF-MEMS switches for reconfigurable integrated circuits. IEEE Transactions on Microwave Theory and Techniques, 46, 1868–1880.

    Article  Google Scholar 

  12. Behdad, N., & Sarabandi, K. (2006). A varactor-tuned dual-band slot antenna. IEEE Transactions on Antennas and Propagation, 54, 401–408.

    Article  Google Scholar 

  13. Behdad, N., & Sarabandi, K. (2006). Dual-band reconfigurable antenna with a very wide tunability range. IEEE Transactions on Antennas and Propagation, 54, 409–416.

    Article  Google Scholar 

  14. Mak, A. C. K., Rowell, C. R., Murch, R. D., & Chi-Lun, Mak. (2007). Reconfigurable multiband antenna designs for wireless communication devices. IEEE Transactions on Antennas and Propagation, 55, 1919–1928.

    Article  Google Scholar 

  15. Van Blaricum, M. L. (2000). A brief history of photonic antenna reconfiguration, International Topical Meeting on Microwave Photonics MWP.

  16. Panagamuwa, C. J., Chauraya, A., & Vardaxoglou, J. C. (2006). Frequency and beam reconfigurable antenna using photoconducting switches. IEEE Transactions on Antennas and Propagation, 54, 449–454.

    Article  Google Scholar 

  17. Tawk, Y., Albrecht, A. R., Hemmady, S., Balakrishnan, G., & Christodoulou, C. G. (2010). Optically pumped reconfigurable antenna design. IEEE Antennas and Wireless Propagation Letters, 9, 280–283.

  18. Balanis, C. A. (2005). Antenna theory analysis and design. Hoboken, NJ: Wiley.

    Google Scholar 

  19. Yazgan, A. et al. (2012). Optically reconfigurable fractal antennas for RoF systems TSP 2012, Prague, Chezh Republic, pp. 233–236, 2–4 June.

  20. Sze, S. M., & Kwok, K. N. (2006). Physics of semiconductor devices third edition. New York: John Wiley Sons Inc.

  21. Muller, R. S., Kamins, T. I., & Chan, M. (2003). Device electronics for integrated circuits (3rd ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  22. Lee, C. H., Mak, P. S., & DeFonzo, A. P. (1980). Optical control of millimeter-wave propagation in dielectric waveguides. IEEE Journal of Quantum Electronics, 16, 277–288.

    Article  Google Scholar 

  23. Visani, D., Tartarini, G., Tarlazzi, L., & Faccin, P. (2011). Transmission of UMTS and WIMAX signals over cost-effective radio over fiber systems. Microwave and Wireless Components Letters, 19, 831–833.

    Article  Google Scholar 

  24. Yazgan, A., & Cavdar, I. H. (2014). Optimum link distance determination for a constant signal to noise ratio in M-Ary PSK modulated coherent optical OFDM systems. Telecommunication Systems, 55, 461–470.

    Article  Google Scholar 

  25. Masyuk, V. M., & Masyuk, M. M. (2004). Application of the Kravchenko-Weierstrass function in the theory of fractal antennas. In: The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves.

  26. Gianvittorio, J. P., & Rahmat-Samii, Y. (2002). Fractal Antennas: A novel antenna miniaturization technique, and applications. IEEE Antenna’s and Propagation Magazine, 44, 20–36.

    Article  Google Scholar 

  27. Kravchenko, V. F. (2003). The theory of fractal antenna arrays. In: 4th International Conference on Antenna Theory and Techniques, Ukraine.

  28. Potapov, A. A., Matveev, E. N., Potapov, V. A., & Laktyunkin, A. V. (2007). Mathematical and physics modeling of fractal antennas and fractal frequency selective surfaces and volumes for the fractal radio systems, the second european conference on antennas and propagation. Edinburgh: EuCAP.

    Google Scholar 

  29. Harrington, R. F. (1968, 1993). Field computation by moment method. New York: IEEE Press.

  30. Arvas, E., & Sevgi, L. (2012). A tutorial on the method of moments. IEEE Antennas and Propagation Magazine, 54, 260–275.

    Article  Google Scholar 

  31. Astely, D., Dahlman, E., Furuskar, A., Jading, Y., Lindstrom, M., & Parkvall, S. (2009). LTE: The evolution of mobile broadband. IEEE Communications Magazine, 47, 44–51.

    Article  Google Scholar 

  32. Li, X., Toseef, U., Dulas, D., Bigos, W., Görg, C., Giel, A. T., et al. (2011). Dimensioning of the LTE access network. Telecommunication Systems, 52(4), 2637–2654.

  33. Alexiou, A., Bouras, C., & Rekkas, E. (2010). An improved MBMS power counting mechanism towards long term evolution. Telecommunication Systems, 43, 109–119.

    Article  Google Scholar 

  34. Ulvan, A., Bestak, R., & Ulvan, M. (2011). Handover procedure and decision strategy in LTE-based femtocell network. Telecommunication Systems, 52(4), 2733–2748.

    Article  Google Scholar 

  35. Gochev, H., Poulkov, V., & Iliev, G. (2011). Improving cell edge throughput for LTE using combined uplink power control. Telecommunication Systems, 52(3), 1541–1547.

    Article  Google Scholar 

  36. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 42, 201–220.

    Article  Google Scholar 

  37. Mitola, J, I. I. I., & Maguire, G. Q, Jr. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6, 13–18.

    Article  Google Scholar 

  38. Tang, Z., Wei, G., & Zhu, Y. (2009). Weighted sum rate maximization for OFDM-based cognitive radio systems. Telecommunication Systems, 42, 77–84.

    Article  Google Scholar 

  39. Zhang, Y., & Leung, C. (2009). Cross-layer resource allocation for real-time services in OFDM-based cognitive radio systems. Telecommunication Systems, 42, 97–108.

    Article  Google Scholar 

  40. Sakran, H., & Shokair, M. (2011). Hard and softened combination for cooperative spectrum sensing over imperfect channels in cognitive radio networks. Telecommunication Systems, 52(1), 61–71.

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank EMCoS and Turk Telekom for their material support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Yazgan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazgan, A., Kaya, H. & Cavdar, I.H. Optically reconfigurable Sierpinski fractal antennas for RoF based communication systems. Telecommun Syst 59, 453–461 (2015). https://doi.org/10.1007/s11235-014-9905-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9905-4

Keywords

Navigation