Skip to main content

Towards energy-efficient cooperative spectrum sensing for cognitive radio networks: an overview

Abstract

Cognitive radio has been proposed as a promising technology to resolve the spectrum scarcity problem by dynamically exploiting underutilized spectrum bands. Cognitive radio technology allows unlicensed users to exploit the spectrum vacancies at any time with no or limited extra interference at the licensed users. Usually, cognitive radios create networks in order to better identify spectrum vacancies, avoid resultant interference, and consequently, magnify their revenues. One of the main challenges in cognitive radio networks (CRNs) is the high energy consumption, which may limit their implementation especially in battery-powered terminals. The large consumption mainly occurs during the spectrum sensing stage, especially if a cooperative approach is employed, and has an impact on the data transmission stage. Many algorithms have been proposed in the literature in order to improve the energy efficiency of cooperative spectrum sensing methods in CRNs. In this article, we provide an overview of state-of-the-art research that addresses this problem. Furthermore, we suggest important design guidelines of an energy-efficient framework for cooperative spectrum sensing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Zhang, H., Gladisch, A., Pickavet, M., Tao, Z., & Mohr, W. (2010). Energy efficiency in communications. Communications Magazine, IEEE, 48(11), 48–49.

    Article  Google Scholar 

  2. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  3. Mitola, J., & Maguire, G. Q, Jr. (1999). Cognitive radio: Making software radios more personal. Personal Communications, IEEE, 6(4), 13–18.

    Article  Google Scholar 

  4. Sherman, M., Mody, A. N., Martinez, R., Rodriguez, C., & Reddy, R. (2008). IEEE standards supporting cognitive radio and networks, dynamic spectrum access, and coexistence. Communications Magazine, IEEE, 46(7), 72–79.

    Article  Google Scholar 

  5. Mueck, M., Piipponen, A., Kalliojarvi, K., Dimitrakopoulos, G., Tsagkaris, K., Demestichas, P., ... & Hayar, A. (2010). ETSI reconfigurable radio systems: status and future directions on software defined radio and cognitive radio standards. Communications Magazine, IEEE, 48(9), 78–86.

  6. Yoshino, H. (2012). ITU-R standardization activities on cognitive radio. IEICE Transactions on Communications, 95(4), 1036–1043.

    Article  Google Scholar 

  7. Granelli, F., Pawelczak, P., Prasad, R. V., Subbalakshmi, K. P., Chandramouli, R., Hoffmeyer, J. A., et al. (2010). Standardization and research in cognitive and dynamic spectrum access networks: IEEE SCC41 efforts and other activities. Communications Magazine, IEEE, 48(1), 71–79.

    Article  Google Scholar 

  8. OFCOM. Digital dividend: clearing the 800 MHz band. http://www.ofcom.org.uk/consult/condocs/cognitive/.

  9. Report ITU-R SM.2152 (2009, September). Definitions of Software Defined Radio (SDR) and Cognitive Radio System (CRS).

  10. Filin, S., Murakami, H., Harada, H., Yoshino, H., Kashiki, K., & Shibata, T. (2011, June). ITU-R standardization activities on Cognitive Radio Systems. In: Sixth International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2011 (pp. 116–120). IEEE.

  11. Zeng, Y., Liang, Y. C., Lei, Z., Oh, S. W., Chin, F., & Sun, S. (2010, April). Worldwide regulatory and standardization activities on cognitive radio. In: IEEE Symposium on New Frontiers in Dynamic Spectrum, 2010 (pp. 1–9). IEEE.

  12. Ghasemi, A., & Sousa, E. S. (2008). Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-offs. Communications Magazine, IEEE, 46(4), 32–39.

    Article  Google Scholar 

  13. Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.

    Article  Google Scholar 

  14. Ghasemi, A., & Sousa, E. S. (2005, November). Collaborative spectrum sensing for opportunistic access in fading environments. In: First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks DySPAN, 2005 (pp. 131–136). IEEE.

  15. Di Renzo, M., Graziosi, F., & Santucci, F. (2009, April). Cooperative spectrum sensing in cognitive radio networks over correlated log-normal shadowing. In: IEEE 69th Vehicular Technology Conference, VTC Spring. 2009 (pp. 1–5). IEEE.

  16. Cabric, D., Mishra, S. M., & Brodersen, R. W. (2004, November). Implementation issues in spectrum sensing for cognitive radios. In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004 (Vol. 1, pp. 772–776). IEEE.

  17. Di Renzo, M., Imbriglio, L., Graziosi, F., & Santucci, F. (2009, November). Cooperative spectrum sensing over correlated log-normal sensing and reporting channels. In: Global communications Conference, GLOBECOM, 2009 (pp. 1–8). IEEE.

  18. Adelantado, F., Juan, A., & Verikoukis, C. (2010). Adaptive sensing user selection mechanism in cognitive wireless networks. IEEE Communications Letters, 14(9), 800–802.

    Article  Google Scholar 

  19. Letaief, K. B., & Zhang, W. (2007). Cooperative spectrum sensin. Cognitive Wireless Communication Networks. Berlin: Springer.

    Google Scholar 

  20. Renzo, M., Imbriglio, L., Graziosi, F., & Santucci, F. (2009). Distributed data fusion over correlated log-normal sensing and reporting channels: Application to cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5813–5821.

    Article  Google Scholar 

  21. Wang, S., Wang, Y., Coon, J. P., & Doufexi, A. (2012). Energy-efficient spectrum sensing and access for cognitive radio networks. IEEE Transactions on Vehicular Technology, 61(2), 906–912.

    Article  Google Scholar 

  22. Wang, W., Wu, K., Luo, H., Yu, G., & Zhang, Z. (2013). Sensing error aware delay-optimal channel allocation scheme for cognitive radio networks. Telecommunication Systems, 52(4), 1895–1904.

    Article  Google Scholar 

  23. Chen, R., Park, J. M., Hou, Y. T., & Reed, J. H. (2008). Toward secure distributed spectrum sensing in cognitive radio networks. Communications Magazine, IEEE, 46(4), 50–55.

    Article  Google Scholar 

  24. Adelantado, F., & Verikoukis, C. (2013). Detection of malicious users in cognitive radio ad hoc networks: A non-parametric statistical approach. Ad Hoc Networks, 11(8), 2367–2380.

    Article  Google Scholar 

  25. Mesodiakaki, A., Adelantado, F., Alonso, L., & Verikoukis, C. (2013, June). Energy efficiency analysis of secondary networks in cognitive radio systems. In: IEEE International Conference on Communications (ICC), 2013 (pp. 4115–4119). IEEE.

  26. Zhu, J., Wang, J., Luo, T., & Li, S. (2009). Adaptive transmission scheduling over fading channels for energy-efficient cognitive radio networks by reinforcement learning. Telecommunication Systems, 42(1–2), 123–138.

    Article  Google Scholar 

  27. Wang, B., & Liu, K. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.

    Article  Google Scholar 

  28. Liang, Y. C., Chen, K. C., Li, G. Y., & Mahonen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology, 60(7), 3386–3407.

  29. Marinho, J., & Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147–164.

    Article  Google Scholar 

  30. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. Communications Magazine, IEEE, 46(4), 40–48.

    Article  Google Scholar 

  31. Tragos, E. Z., Zeadally, S., Fragkiadakis, A. G., & Siris, V. A. (2013). Spectrum assignment in cognitive radio networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 15(3), 1108–1135.

    Article  Google Scholar 

  32. Pawelczak, P., Nolan, K., Doyle, L., Oh, S. W., & Cabric, D. (2011). Cognitive radio: Ten years of experimentation and development. Communications Magazine, IEEE, 49(3), 90–100.

    Article  Google Scholar 

  33. Amanna, A., & Reed, J. H. (2010, March). Survey of cognitive radio architectures. In: Proceedings of the IEEE Southeast Conference 2010 (SoutheastCon) (pp. 292–297). IEEE.

  34. Cesana, M., Cuomo, F., & Ekici, E. (2011). Routing in cognitive radio networks: Challenges and solutions. Ad Hoc Networks, 9(3), 228–248.

    Article  Google Scholar 

  35. Maharjan, S., Zhang, Y., & Gjessing, S. (2011). Economic approaches for cognitive radio networks: A survey. Wireless Personal Communications, 57(1), 33–51.

    Article  Google Scholar 

  36. Cormio, C., & Chowdhury, K. R. (2009). A survey on MAC protocols for cognitive radio networks. Ad Hoc Networks, 7(7), 1315–1329.

    Article  Google Scholar 

  37. De Domenico, A., Strinati, E. C., & Di Benedetto, M. (2012). A survey on MAC strategies for cognitive radio networks. Communications Surveys & Tutorials, IEEE, 14(1), 21–44.

    Article  Google Scholar 

  38. Wang, H., Qin, H., & Zhu, L. (2008, December). A survey on MAC protocols for opportunistic spectrum access in cognitive radio networks. In: International Conference on Computer Science and Software Engineering, 2008 (Vol. 1, pp. 214–218). IEEE.

  39. Wang, B., Wu, Y., & Liu, K. J. (2010). Game theory for cognitive radio networks: An overview. Computer Networks, 54(14), 2537–2561.

    Article  Google Scholar 

  40. He, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., ... & Tranter, W. H. (2010). A survey of artificial intelligence for cognitive radios. IEEE Transactions on Vehicular Technology, 59(4), 1578–1592.

  41. Rawat, D. B., & Yan, G. (2011). Spectrum sensing methods and dynamic spectrum sharing in cognitive radio networks: A survey. International Journal of Research and Reviews in Wireless Sensor Networks, 1(1), 1–13.

  42. Lu, L., Zhou, X., Onunkwo, U., & Li, G. Y. (2012). Ten years of research in spectrum sensing and sharing in cognitive radio. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1–16.

    Article  Google Scholar 

  43. Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. Signal Processing Magazine, IEEE, 29(3), 101–116.

    Article  Google Scholar 

  44. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. Communications Surveys & Tutorials, IEEE, 11(1), 116–130.

    Article  Google Scholar 

  45. Ariananda, D. D., Lakshmanan, M. K., & Nikookar, H. (2009, May). A survey on spectrum sensing techniques for cognitive radio. In: Second International Workshop on Cognitive Radio and Advanced Spectrum Management, CogART, 2009 (pp. 74–79). IEEE.

  46. Ma, J., Li, G. Y., & Juang, B. H. (2009). Signal processing in cognitive radio. Proceedings of the IEEE, 97(5), 805–823.

    Article  Google Scholar 

  47. Sun, H., Nallanathan, A., Wang, C. X., & Chen, Y. (2013). Wideband spectrum sensing for cognitive radio networks: A survey. Wireless Communications, IEEE, 20(2), 74–81.

    Article  Google Scholar 

  48. Lo, B. F. (2011). A survey of common control channel design in cognitive radio networks. Physical Communication, 4(1), 26–39.

    Article  Google Scholar 

  49. Fragkiadakis, A. G., Tragos, E. Z., & Askoxylakis, I. G. (2013). A survey on security threats and detection techniques in cognitive radio networks. Communications Surveys & Tutorials, IEEE, 15(1), 428–445.

    Article  Google Scholar 

  50. Zhang, X., & Li, C. (2009, June). The security in cognitive radio networks: a survey. In: Proceedings of the 2009 International Conference on Wireless Communications and Mobile Computing: Connecting the World Wirelessly (pp. 309–313). ACM.

  51. Baldini, G., Sturman, T., Biswas, A. R., Leschhorn, R., Gdor, G., & Street, M. (2012). Security aspects in software defined radio and cognitive radio networks: a survey and a way ahead. Communications Surveys & Tutorials, IEEE, 14(2), 355–379.

    Article  Google Scholar 

  52. El-Hajj, W., Safa, H., & Guizani, M. (2011). Survey of security issues in cognitive radio networks. Journal of Internet Technology, 12(2), 181–198.

    Google Scholar 

  53. LLetaief, K., & Zhang, W. (2009). Cooperative communications for cognitive radio networks. Proceedings of the IEEE, 97(5), 878–893.

    Article  Google Scholar 

  54. Di Renzo, M. Energy efficiency metrics and performance tradeoffs of GREEN wireless networks, book chapter in Green Communications: Principles, concepts and practice, Wiley-Blackwell, ISBN-13: 978–1118759264, (to appear).

  55. Bousia, A., Kartsakli, E., Antonopoulos, A., Alonso, L., & Verikoukis, C. (2013, June). Game theoretic approach for switching off base stations in multi-operator environments. In: IEEE International Conference on Communications (ICC), 2013 (pp. 4420–4424). IEEE.

  56. Antonopoulos, A., & Verikoukis, C. (2014). Multi-player game theoretic MAC strategies for energy efficient data dissemination.

  57. Katsigiannis, M., & Hmminen, H. (2014). Energy consumption of radio access networks in Finland. Telecommunication Systems, 55(2), 241–251.

    Article  Google Scholar 

  58. Antonopoulos, A., Renzo, M. D., & Verikoukis, C. (2013). Effect of realistic channel conditions on the energy efficiency of network coding-aided cooperative MAC protocols. Wireless Communications, IEEE, 20(5), 76–84.

    Article  Google Scholar 

  59. Imran, R., Shukair, M., Zorba, N., Kubbar, O., & Verikoukis, C. (2013, June). A novel energy saving MIMO mechanism in LTE systems. In: IEEE International Conference on Communications (ICC), 2013 (pp. 2449–2453). IEEE.

  60. Antonopoulos, A., Bas, J., Katz, M., Lundqvist, H., Moreira, T., Ntontin, K., ... & Zorba, N. (2012, September). Green-T: Enabling techniques for energy efficient mobile terminals. In: IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2012 (pp. 206–210). IEEE.

  61. Sun, C., Zhang, W., & Letaief, K. (2007, March). Cooperative spectrum sensing for cognitive radios under bandwidth constraints. In: Wireless Communications and Networking Conference, 2007. WCNC 2007 (pp. 1–5). IEEE.

  62. Xia, W., Yuan, W., Cheng, W., Liu, W., Wang, S., & Xu, J. (2010, December). Optimization of cooperative spectrum sensing in ad-hoc cognitive radio networks. In: Global Telecommunications Conference (GLOBECOM 2010), 2010 (pp. 1–5). IEEE.

  63. Passiatore, C., & Camarda, P. (2013). A fair MAC protocol for resource sharing in ad-hoc cognitive networks. Telecommunication Systems, 1–15.

  64. Digham, F. F., Alouini, M. S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.

    Article  Google Scholar 

  65. Proakis, J. G. (2001). Digital communications (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  66. Oner, M., & Jondral, F. (2004, September). Cyclostationarity based air interface recognition for software radio systems. In: Radio and Wireless Conference, 2004 (pp. 263–266). IEEE.

  67. Li, X., Hu, F., Zhang, H., & Shi, C. (2013). Two-branch wavelet denoising for accurate spectrum sensing in cognitive radios. Telecommunication Systems, 1–10.

  68. Tang, H. (2005, November). Some physical layer issues of wide-band cognitive radio systems. In: First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks 2005, DySPAN 2005 (pp. 151–159). IEEE.

  69. Umar, R., Sheikh, A., & Deriche, M. (2014). Unveiling the hidden assumptions of energy detector based spectrum sensing for cognitive radios.

  70. Zeng, Y., Liang, Y. C., Hoang, A. T., & Zhang, R. (2010). A review on spectrum sensing for cognitive radio: Challenges and solutions. EURASIP Journal on Advances in Signal Processing, 2010, 2.

    Article  Google Scholar 

  71. Ma, J., Zhao, G., & Li, Y. (2008). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(11), 4502–4507.

    Article  Google Scholar 

  72. Maleki, S., Pandharipande, A., & Leus, G. (2011). Energy-efficient distributed spectrum sensing for cognitive sensor networks. Sensors Journal, IEEE, 11(3), 565–573.

    Article  Google Scholar 

  73. Li, H., Dai, H., & Li, C. (2010). Collaborative quickest spectrum sensing via random broadcast in cognitive radio systems. IEEE Transactions on Wireless Communications, 9(7), 2338–2348.

    Article  Google Scholar 

  74. Visotsky, E., Kuffner, S., & Peterson, R. (2005, November). On collaborative detection of TV transmissions in support of dynamic spectrum sharing. In: First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005, 2005 (pp. 338–345). IEEE.

  75. Peh, E. C. Y., Liang, Y. C., Guan, Y. L., & Zeng, Y. (2009). Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view. IEEE Transactions on Vehicular Technology, 58(9), 5294–5299.

    Article  Google Scholar 

  76. Qihang, P., Kun, Z., Jun, W., & Shaoqian, L. (2006, September). A distributed spectrum sensing scheme based on credibility and evidence theory in cognitive radio context. In: IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, 2006 (pp. 1–5). IEEE.

  77. Unnikrishnan, J., & Veeravalli, V. V. (2008). Cooperative sensing for primary detection in cognitive radio. IEEE Journal of Selected Topics in Signal Processing, 2(1), 18–27.

    Article  Google Scholar 

  78. Maleki, S., Chepuri, S. P., & Leus, G. (2011, June). Energy and throughput efficient strategies for cooperative spectrum sensing in cognitive radios. In: IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2011 (pp. 71–75). IEEE.

  79. Althunibat, S., Palacios, R., & Granelli, F. (2012, June). Energy-efficient spectrum sensing in Cognitive Radio Networks by coordinated reduction of the sensing users. In: IEEE International Conference on Communications (ICC), 2012 (pp. 1399–1404). IEEE.

  80. Pham, H. N., Zhang, Y., Engelstad, P. E., Skeie, T., & Eliassen, F. (2010, March). Energy minimization approach for optimal cooperative spectrum sensing in sensor-aided cognitive radio networks. In: The 5th Annual ICST on Wireless Internet Conference (WICON), 2010 (pp. 1–9). IEEE.

  81. Cheng, P., Deng, R., & Chen, J. (2012). Energy-efficient cooperative spectrum sensing in sensor-aided cognitive radio networks. Wireless Communications, IEEE, 19(6), 100–105.

    Article  Google Scholar 

  82. Najimi, M., Ebrahimzadeh, A., Andargoli, S., Hosseini, M., & Fallahi, A. (2013). A novel sensing nodes and decision node selection method for energy efficiency of cooperative spectrum sensing in cognitive sensor networks. IEEE Sensors Journal, 13(5), 1610–1621.

    Article  Google Scholar 

  83. Althunibat, S., Narayanan, S., Di Renzo, M., & Granelli, F. (2013, June). Energy-efficient partial-cooperative spectrum sensing in cognitive radio over fading channels. In: IEEE 77th Vehicular Technology Conference (VTC Spring), 2013 (pp. 1–5). IEEE.

  84. Ergul, O., & Akan, O. B. (2013, July). Energy-efficient cooperative spectrum sensing for cognitive radio sensor networks. In: IEEE Symposium on Computers and Communications (ISCC), 2013 (pp. 000465–000469). IEEE.

  85. Monemian, M., & Mahdavi, M. (2014). Analysis of a new energy-based sensor selection method for cooperative spectrum sensing in cognitive radio networks. Sensors Journal, IEEE, 14(9), 3021–3032.

    Article  Google Scholar 

  86. Wang, G., Guo, C., Feng, S., Feng, C., & Wang, S. (2013, September). A two-stage cooperative spectrum sensing method for energy efficiency improvement in cognitive radio. In: IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 2013 (pp. 876–880). IEEE.

  87. Eryigit, S., Bayhan, S., & Tugcu, T. (2013). Energy-efficient multichannel cooperative sensing scheduling with heterogeneous channel conditions for cognitive radio networks. IEEE Transactions on Vehicular Technology, 62(6), 2690–2699.

    Article  Google Scholar 

  88. Su, H., & Zhang, X. (2010). Energy-efficient spectrum sensing for cognitive radio networks. International Conference on Communications (ICC), IEEE, 1(5), 23–27.

    Google Scholar 

  89. Wang, B., Feng, Z., Huang, D., & Zhang, P. (2013). Discontinuous spectrum sensing scheme for energy-constrained cognitive radio networks. Electronics letters, 49(6), 429–430.

    Article  Google Scholar 

  90. Wu, Y., & Tsang, D. H. (2011). Energy-efficient spectrum sensing and transmission for cognitive radio system. IEEE Communications Letters, 15(5), 545–547.

    Article  Google Scholar 

  91. Zhao, N., Yu, F. R., Sun, H., & Nallanathan, A. (2012). An energy-efficient cooperative spectrum sensing scheme for cognitive radio networks. In: Global Communications Conference (GLOBECOM) (pp. 3600–3604). IEEE.

  92. Feng, X., Gan, X., & Wang, X. (2011, December). Energy-constrained cooperative spectrum sensing in cognitive radio networks. In: Global Telecommunications Conference (GLOBECOM 2011), 2011 (pp. 1–5). IEEE.

  93. Gao, Y., Xu, W., Yang, K., Niu, K., & Lin, J. (2013, April). Energy-efficient transmission with cooperative spectrum sensing in cognitive radio networks. In: Wireless Communications and Networking Conference (WCNC), 2013 (pp. 7–12). IEEE.

  94. Jun, Y., & Qi, Z. (2013, January). Optimization of cooperative sensing based on energy consume in cognitive radio networks. In: Conference Anthology (pp. 1–5). IEEE.

  95. Li, X., Cao, J., Ji, Q., & Hei, Y. (2013, April). Energy efficient techniques with sensing time optimization in cognitive radio networks. In: Wireless Communications and Networking Conference (WCNC), 2013 (pp. 25–28). IEEE.

  96. Xu, M., Li, H., & Gan, X. (2011, June). Energy efficient sequential sensing for wideband multi-channel cognitive network. In: IEEE International Conference on Communications (ICC), 2011 (pp. 1–5). IEEE.

  97. Mishra, S. M., Sahai, A., & Brodersen, R. W. (2006, June). Cooperative sensing among cognitive radios. In: IEEE International Conference on Communications, 2006. ICC’06 (Vol. 4, pp. 1658–1663). IEEE.

  98. Chaudhari, S., Lunden, J., Koivunen, V., & Poor, H. V. (2012). Cooperative sensing with imperfect reporting channels: Hard decisions or soft decisions? IEEE Transactions on Signal Processing, 60(1), 18–28.

    Article  Google Scholar 

  99. Althunibat, S., Palacios, R., & Granelli, F. (2012). Performance optimisation of soft and hard spectrum sensing schemes in cognitive radio. Communications Letters, IEEE, 16(7), 998–1001.

    Article  Google Scholar 

  100. Sakran, H., & Shokair, M. (2013). Hard and softened combination for cooperative spectrum sensing over imperfect channels in cognitive radio networks. Telecommunication Systems, 52(1), 61–71.

    Article  Google Scholar 

  101. Shen, J., Liu, S., Zhang, R., & Liu, Y. (2008, August). Soft versus hard cooperative energy detection under low SNR. In: Third International Conference on Communications and Networking in China, 2008. ChinaCom 2008 (pp. 128–131). IEEE.

  102. Althunibat, S., & Granelli, F. (2013, September). Energy-efficient reporting scheme for cooperative spectrum sensing. In: IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2013 (pp. 28–32). IEEE.

  103. Lundn, J., Koivunen, V., Huttunen, A., & Poor, H. V. (2009). Collaborative cyclostationary spectrum sensing for cognitive radio systems. IEEE Transactions on Signal Processing, 57(11), 4182–4195.

    Article  Google Scholar 

  104. Appadwedula, S., Veeravalli, V. V., & Jones, D. L. (2008). Decentralized detection with censoring sensors. IEEE Transactions on Signal Processing, 56(4), 1362–1373.

    Article  Google Scholar 

  105. Maleki, S., & Leus, G. (2013). Censored truncated sequential spectrum sensing for cognitive radio networks. IEEE Journal on Selected Areas in Communications, 31(3), 364–378.

    Article  Google Scholar 

  106. Lee, C. H., & Wolf, W. (2008, January). Energy efficient techniques for cooperative spectrum sensing in cognitive radios. In: 5th IEEE Consumer Communications and Networking Conference, 2008, CCNC 2008 (pp. 968–972). IEEE.

  107. Althunibat, S., & Granelli, F. (2013, June). Novel energy-efficient reporting scheme for spectrum sensing results in cognitive radio. In: IEEE International Conference on Communications (ICC), 2013 (pp. 2438–2442). IEEE.

  108. Sun, C., Zhang, W., & Ben, K. (2007, June). Cluster-based cooperative spectrum sensing in cognitive radio systems. In: IEEE International Conference on Communications, 2007. ICC’07 (pp. 2511–2515). IEEE.

  109. Xia, W., Wang, S., Liu, W., & Chen, W. (2009, September). Cluster-based energy efficient cooperative spectrum sensing in cognitive radios. In: 5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009. WiCom’09 (pp. 1–4). IEEE.

  110. Wei, J., & Zhang, X. (2010, March). Energy-efficient distributed spectrum sensing for wireless cognitive radio networks. In: INFOCOM IEEE Conference on Computer Communications Workshops, 2010 (pp. 1–6). IEEE.

  111. Khasawneh, M., Agarwal, A., Goel, N., Zaman, M., & Alrabaee, S. (2012, July). Sureness efficient energy technique for cooperative spectrum sensing in cognitive radios. In: International Conference on Telecommunications and Multimedia (TEMU), 2012 (pp. 25–30). IEEE.

  112. Kozal, A. S., Merabti, M., & Bouhafs, F. (2014, April). Spectrum sensing-energy tradeoff in multi-hop cluster based cooperative cognitive radio networks. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2014 (pp. 765–770). IEEE.

  113. Kozal, A. S., Merabti, M., & Bouhafs, F. (2014, April). Spectrum sensing-energy tradeoff in multi-hop cluster based cooperative cognitive radio networks. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2014 (pp. 765–770). IEEE.

  114. Peh, E. C. Y., Liang, Y. C., Guan, Y. L., & Pei, Y. (2011, December). Energy-efficient cooperative spectrum sensing in cognitive radio networks. In: IEEE Global communications Conference, (pp. 1–5).

  115. Althunibat, S., Di Renzo, M., & Fabrizio, G. (2013, December). Optimizing the K-out-of-N rule for cooperative spectrum sensing in cognitive radio networks. In: Proceedings of the IEEE Global Communications Conference (pp. 1–5).

  116. Maleki, S., Chepuri, S. P., & Leus, G. (2013). Optimization of hard fusion based spectrum sensing for energy-constrained cognitive radio networks. Physical Communication, 9, 193–198.

    Article  Google Scholar 

  117. Althunibat, S., Narayanan, S., Di Renzo, M., & Granelli, F. (2012, September). On the energy consumption of the decision-fusion rules in cognitive radio networks. In: IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2012 (pp. 125–129). IEEE.

Download references

Acknowledgments

This work is funded by the Research Project GREENET (PITN-GA-2010-264759).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saud Althunibat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Althunibat, S., Di Renzo, M. & Granelli, F. Towards energy-efficient cooperative spectrum sensing for cognitive radio networks: an overview. Telecommun Syst 59, 77–91 (2015). https://doi.org/10.1007/s11235-014-9887-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9887-2

Keywords

  • Wireless communications
  • Cognitive radio networks
  • Energy efficiency
  • Cooperative spectrum sensing