Skip to main content
Log in

The unreliable-concurrent multipath transfer (U-CMT) protocol for multihomed networks

U-CMT

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Many real-time applications, such as Video on Demand, are sensitive to the transmission delay and allow data loss. Computing devices in multihomed networks are equipped with multiple interfaces such as 3G and Wi-Fi. This work presents an Unreliable Concurrent Multipath Transfer (U-CMT) protocol that satisfies requirements of real-time applications running on multihomed devices. U-CMT is based on Stream Control Transmission Protocol Partial Reliability Extension (PR-SCTP) and the Concurrent Multipath Transfer (CMT) protocol. The novel features of U-CMT are (1) allowance of data loss, (2) sequential data delivery, (3) congestion control, and (4) multipath data transmission. During multipath transfer of unreliable data, congestion control of PR-SCTP may become useless, and receiver buffer blocking occurs. U-CMT uses Path Sequence Number (PSN) to identify data transmission sequence on a per-path basis. The receiver is able to abandon lost data using PSN. As a result, the occurrence of receiver buffer blocking is reduced. Comparing with other protocols, the simulation results show that U-CMT achieves better stable playable frame rate in multihomed networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart, R. (2007). Stream control transmission protocol. IETF, RFC, 4960 (pp. 1–152).

  2. Derini, M. N. E., & Elshikh, A. A. (2008). Mpeg-4 video transfer with SCTP-friendly rate control. In Proceedings of the 4th ACM workshop on wireless multimedia networking and performance modeling (pp. 32–36).

    Google Scholar 

  3. Lai, Y.-C. (2008). DCCP: Transport protocol with congestion control and unreliability. IEEE Internet Computing, 12(5), 78–83.

    Article  Google Scholar 

  4. Iyengar, J. R., Amer, P. D., & Stewart, R. (2006). Concurrent multipath transfer using SCTP multihoming over independent end-to-end paths. IEEE/ACM Transactions on Networking, 6(14), 951–964.

    Article  Google Scholar 

  5. Huang, C. M., & Lin, M. S. (2009). An unreliable concurrent multipath transfer protocol over multihomed networks. In Proceedings of the 13th IASTED international conference on internet and multimedia systems and applications (IMSA 2009) (pp. 1–5).

    Google Scholar 

  6. Lee, H.-J., Byun, H.-J., & Lim, J.-T. (2008). mSCTP for soft handover in transport layer. IET Communications, 2(1), 159–163.

    Article  Google Scholar 

  7. Chou, L.-D., Chen, J.-M., Kao, H.-S., Wu, S.-F., & Lai, W. (2006). Seamless streaming media for heterogeneous mobile networks. IET Communications, 11(6), 873–887.

    Google Scholar 

  8. Jammeh, E. A., Fleury, M., & Ghanbari, M. (2009). Performance analysis of multi-homed transport protocols with network failure tolerance. IET Communications, 3(1), 25–37.

    Article  Google Scholar 

  9. Iyengar, J. R., Amer, P. D., & Stewart, R. (2005). Receive buffer blocking in concurrent multipath transfer. In Proceedings of the global telecommunications conference (pp. 121–125).

    Google Scholar 

  10. Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., & Conrad, P. (2004). Stream control transmission protocol partial reliability extension. IETF, RFC, 3758 (1–22).

  11. Huang, C. M., Lin, C. W., & Lin, X. Y. (2007). A predictive video-on-demand bandwidth management using the Kalman filter over heterogeneous networks. Computer Journal, 52(2), 171–185.

    Article  Google Scholar 

  12. Molteni, M., & Villari, M. (2002). Using SCTP with partial reliability for MPEG-4 multimedia streaming. In Proceedings of the BSD conference (pp. 1–7).

    Google Scholar 

  13. Connie, A. T., Nasiopoulos, P., Fallah, Y. P., & Leung, V. C. (2008). SCTP-based transmission of data-partitioned h.264 video. In Proceedings of the 4th ACM workshop on wireless multimedia networking and performance modeling (pp. 32–36).

    Chapter  Google Scholar 

  14. Xu, C.-Q., Fallon, E., Qiao, Y.-S., Muntean, G.-M., Li, X.-G., & Hanley, A. (2009). Performance evaluation of distributing real-time video over concurrent multipath. In Proceedings of the IEEE wireless communications and networking conference (pp. 1–6).

    Google Scholar 

  15. Aydin, I., & Shen, C.-C. (2009). Performance evaluation of concurrent multipath transfer using SCTP multihoming in multihop wireless networks. In Proceedings of the IEEE wireless communications and networking conference (pp. 234–241).

    Google Scholar 

  16. Huang, C. M., & Lin, M. S. (2008). Partially reliable-concurrent multipath transfer (PR-CMT) for multihomed networks. In Proceedings of the IEEE Globecom (Globecom2008) (pp. 1–5).

    Google Scholar 

  17. Ali, A. B., Lengliz, I., & Kamoun, F. (2009). The proportional and derivative algorithm: a new router-based UDP congestion control scheme for mobile wireless networks. In Proceedings of the global information infrastructure symposium (pp. 1–8).

    Google Scholar 

  18. Kohler, E., Handley, M., & Floyd, S. (2006). Datagram congestion control protocol (DCCP). IETF, RFC 4340 (pp. 1–129).

  19. Floyd, S., Handley, M., Padhye, J., & Widmer, J. (2008). TCP Friendly Rate Control (TFRC): protocol specification. IETF, RFC 5348 (pp. 1–58).

  20. Ladha, S., Baucke, S., Lwdwig, R., & Amer, P. D. (2004). On making SCTP robust to spurious retransmissions. Computer Communication Review, 32(2), 2971–2976.

    Google Scholar 

  21. Tanaka, S., Ishii, H., Sao, T., Iizuka, Y., & Nakamori, T. (2005). HSDPA throughput performances using an experimental HSDPA transmission system. NTT DoCoMo Technical Journal, 6(4), 19–28.

    Google Scholar 

  22. Iyengar, J. R., Amer, P. D., & Stewart, R. (2006). Concurrent multipath transfer using SCTP multihoming over independent end-to-end paths. IEEE/ACM Transactions on Networking, 14(5), 951–964.

    Article  Google Scholar 

  23. Moving Picture Experts Group (MPEG) (2010). http://www.mpeg.org/.

  24. Wu, H., Claypool, M., & Kinicki, R. (2005). Adjusting forward error correction with temporal scaling for TCP-friendly streaming MPEG. ACM Transactions on Multimedia Computing Communications and Applications, 1(4), 2971–2976.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Ming Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CM., Lin, MS. The unreliable-concurrent multipath transfer (U-CMT) protocol for multihomed networks. Telecommun Syst 52, 245–259 (2013). https://doi.org/10.1007/s11235-011-9556-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9556-7

Keywords

Navigation