Skip to main content

Preserving privacy against external and internal threats in WSN data aggregation

Abstract

In this paper, we propose two efficient and privacy-preserving data aggregation protocols for WSNs: PASKOS (Privacy preserving based on Anonymously Shared Keys and Omniscient Sink) and PASKIS (Privacy preserving based on Anonymously Shared Keys and Ignorant Sink)—requiring low overhead. Both protocols guarantee privacy preservation and a high data-loss resilience. In particular, PASKOS effectively protects the privacy of any node against other nodes, by requiring O(log N) communication cost in the worst case and O(1) on average, and O(1) as for memory and computation. PASKIS can even protect a node’s privacy against a compromised sink, requiring only O(1) overhead as for computation, communication, and memory; however, these gains in efficiency are traded-off with a (slightly) decrease in the assured level of privacy.

A thorough analysis and extensive simulations demonstrate the superior performance of our protocols against existing solutions in terms of privacy-preserving effectiveness, efficiency, and accuracy of computed aggregation.

References

  1. He, W., Liu, X., Nguyen, H., Nahrstedt, K., & Abdelzaher, T. (2007). PDA: Privacy-preserving data aggregation in wireless sensor networks. In INFOCOM’07 (pp. 2045–2053).

    Google Scholar 

  2. Stankovic, J. A., Cao, Q., Doan, T., Fang, L., He, Z., Kiran, R., Lin, S., Son, S., Stoleru, R., & Wood, A. (2005). Wireless sensor networks for in-home healthcare: Potential and challenges. In HCMDSS’05 workshop.

    Google Scholar 

  3. De Cristofaro, E., Jarecki, S., Kim, J., & Tsudik, G. (2009). Privacy-preserving policy-based information transfer. In Privacy enhancing technologies (pp. 164–184).

    Chapter  Google Scholar 

  4. Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2002). TAG: a tiny aggregation service for ad-hoc sensor networks. In OSDI’02 (pp. 131–146).

    Google Scholar 

  5. Fung, W. F., Sun, D., & Gehrke, J. (2002). Cougar: the network is the database. In SIGMOD’02 (pp. 621–621).

    Google Scholar 

  6. Castelluccia, C., Chan, A. C.-F., Mykletun, E., & Tsudik, G. (2009). Efficient and provably secure aggregation of encrypted data in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN) 5(3).

  7. Girao, J., Westhoff, D., & Schneider, M. (2005). CDA concealed data aggregation for reverse multicast traffic in wireless sensor networks. In ICC’05 (pp. 3044–3049).

    Google Scholar 

  8. Mlaih, E., & Aly, S. (2008). Secure hop-by-hop aggregation of end-to-end concealed data in wireless sensor networks. In INFOCOM’08, April 2008 (pp. 1–6).

    Google Scholar 

  9. Agrawal, R., & Srikant, R. (2000). Privacy-preserving data mining. In SIGMOD’00 (pp. 439–450).

    Google Scholar 

  10. Evfimievski, A., Srikant, R., Agrawal, R., & Gehrke, J. (2002). Privacy preserving mining of association rules. In KDD’02 (pp. 217–228).

    Google Scholar 

  11. Eschenauer, L., & Gligor, V. D. (2002). A key-management scheme for distributed sensor networks. In CCS’02 (pp. 41–47).

    Google Scholar 

  12. Pietro, R. D., Mancini, L. V., Mei, A., Panconesi, A., & Radhakrishnan, J. (2008). Redoubtable sensor networks. ACM Transactions on Information and System Security 11(3).

  13. Yang, Y., Wang, X., Zhu, S., & Cao, G. (2006). SDAP: a secure hop-by-hop data aggregation protocol for sensor networks. In MobiHoc’06 (pp. 356–367).

    Google Scholar 

  14. Di Pietro, R., Michiardi, P., & Molva, R. (2009). Confidentiality and integrity for data aggregation in WSN using peer monitoring. Security and Communication Networks, 2(2), 181–194.

    Article  Google Scholar 

  15. Roy, S., Setia, S., & Jajodia, S. (2006). Attack-resilient hierarchical data aggregation in sensor networks. In SASN’06 (pp. 71–82).

    Google Scholar 

  16. Chan, H., Perrig, A., & Song, D. (2006). Secure hierarchical in-network aggregation in sensor networks. In CCS’06 (pp. 278–287).

    Google Scholar 

  17. Roy, S., Conti, M., Setia, S., & Jajodia, S. (2009). Secure median computation in wireless sensor networks. Ad Hoc Networks (Elsevier), 7(8), 1448–1462.

    Article  Google Scholar 

  18. Deligiannakis, A., Stoumpos, V., Kotidis, Y., Vassalos, V., & Delis, A. (2008). Outlier-aware data aggregation in sensor networks. In ICDE’08 (pp. 1448–1450).

    Google Scholar 

  19. Wagner, D. (2004). Resilient aggregation in sensor networks. In SASN’04 (pp. 78–87).

    Google Scholar 

  20. Di Pietro, R., Michiardi, P., & Molva, R. (2009). Confidentiality and integrity for data aggregation in wsn using peer monitoring. Security and Communication Networks, 2(2), 181–194.

    Article  Google Scholar 

  21. Yao, A. (1982). Protocols for secure computations. In FOCS’82 (pp. 160–164).

    Google Scholar 

  22. Cramer, R., Damgard, I., & Dziembowski, S. (2000). On the complexity of verifiable secret sharing and multiparty computation. In STOC’00 (pp. 325–334).

    Google Scholar 

  23. Halpern, J., & Teague, V. (2004). Rational secret sharing and multiparty computation: extended abstract. In STOC’04 (pp. 623–632).

    Google Scholar 

  24. Solanas, A., & Di Pietro, R. (2008). A linear-time multivariate micro-aggregation for privacy protection in uniform very large data sets. In MDAI’08 (pp. 203–214).

    Google Scholar 

  25. Di Pietro, R., & Viejo, A. (2010). Location privacy and resilience in wireless sensor networks querying. Computer Communications, 34(3), 515–523.

    Article  Google Scholar 

  26. Yang, Y., Shao, M., Zhu, S., Urgaonkar, B., & Cao, G. (2008). Towards event source unobservability with minimum network traffic in sensor networks. In WiSec 2008 (pp. 77–88).

    Google Scholar 

  27. De Cristofaro, E., Ding, X., & Tsudik, G. (2009). Privacy-preserving querying in sensor networks. In ICCCN’09: proceedings of the 2009 proceedings of 18th international conference on computer communications and networks (pp. 1–6). Washington: IEEE Comput. Soc.

    Chapter  Google Scholar 

  28. Rivest, R., Adleman, L., & Dertouzos, M. (1978). On data banks and privacy homomorphisms. Foundations of Secure Computation 169–179.

  29. Feng, T., Wang, C., Zhang, W., & Ruan, L. (2008). Confidentiality protection for distributed sensor data aggregation. In INFOCOM’08, April 2008 (pp. 56–60).

    Google Scholar 

  30. Conti, M., Di Pietro, R., Mancini, L. V., & Spognardi, A. (2007). FastRIPP: RFID privacy preserving protocol with forward secrecy and fast resynchronization. In IECON 07 (pp. 52–57).

    Google Scholar 

  31. Zhang, L., Zhang, H., Conti, M., Di Pietro, R., Jajodia, S., & Mancini, L. V. (2010). Reverse tree-based key routing: Robust data aggregation in wireless sensor networks. In Proceedings of the third IEEE international symposium on trust, security and privacy for emerging applications (TSP 2010) (pp. 910–915).

    Google Scholar 

  32. Chan, H., Perrig, A., & Song, D. (2003). Random key predistribution schemes for sensor networks. In S&P’03 (pp. 197–213).

    Google Scholar 

  33. Castelluccia, C., Mykletun, E., & Tsudik, G. (2005). Efficient aggregation of encrypted data in wireless sensor networks. In The second annual international conference on mobile and ubiquitous systems: computing, networking and services (MobiQuitous’05) (pp. 109–117).

    Chapter  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mauro Conti.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Zhang, L., Zhang, H., Conti, M. et al. Preserving privacy against external and internal threats in WSN data aggregation. Telecommun Syst 52, 2163–2176 (2013). https://doi.org/10.1007/s11235-011-9539-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9539-8

Keywords

  • Wireless sensor network security
  • Data aggregation
  • Hierarchical aggregation
  • Attack-resilient
  • Privacy