Skip to main content
Log in

Perceptual quality based error control for scalable on-demand streaming in next-generation wireless networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Wireless video streaming is anticipated to be one of the key technologies for many wireless multimedia applications. However, due to the limited bandwidth of wireless networks, it is challenging to provide live or on-demand streaming over wireless networks, especially on-demand streaming, which consumes huge bandwidth. To cope with this problem, many periodic video broadcasting protocols have been proposed for on-demand streaming. However, little research has been done on the error control for these periodic broadcasting protocols. In this paper, we utilize forward error correction (FEC) to develop a quality-adaptive error control scheme for broadcast-based on-demand streaming in next-generation network/IP multimedia subsystem (NGN/IMS) architecture. We first develop an analytic performance model for the error control problem. Then, we develop an efficient error control scheme, called Quality-Based Error Control (QBEC). The main merit of QBEC is that it has low computation complexity and it can find a near-optimal allocation of FEC parity bytes among all streams to maximize the overall quality perceived by all users. Our simulation results indicate that QBEC is an effective and efficient error control scheme for wireless on-demand streaming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

V :

Number of videos

L i :

Number of layers of video i

C i :

Number of broadcast channels used to broadcast a video layer of video i

ε b :

Bit error rate

ε s :

Symbol error rate

m :

Number of bits of a symbol

d :

Number of symbols in a video packet

s i,j,k,t :

Video segment of layer j of video i that is broadcasted on channel k during time t

N i,j,k,t :

Number of packets of segment s i,j,k,t

\(e_{i,j,k,t}^{\emptyset}\) :

Packet error rate for transmitting segment s i,j,k,t without FEC control

\(e_{i,j,k,t}^{\mathit{FEC}}\) :

Packet error rate for transmitting segment s i,j,k,t with FEC control

x i,j,k,t :

Number of erroneous bytes in a video packet of segment s i,j,k,t that can be corrected

\(x_{i,j,k,t}^{*}\) :

Optimal value of x i,j,k,t

λ :

Mean arrival rate of users during a time slot

α i :

Access probability (popularity) of video i

f i,j,k,t :

Broadcasting frequency of segment s i,j,k,t (unit: 1/s)

T :

Length of a broadcasting time slot

g i,j,k,t :

Number of good packets of segment s i,j,k,t

u i,j,k,t :

Expected number of users receiving segment s i,j,k,t during time slot t

G t :

Total number of good packets received by all users during time slot t

\(B_{t}^{\mathit{FEC}}\) :

The bandwidth used to perform error control at time slot t

ϕ i,j :

Maximum allowable packet error rate of layer j of video i

References

  1. Breslau, L., Cao, P., Fan, L., Phillips, G., & Shenker, S. (1999). Web caching and Zipf-like distributions: evidence and implications. In Proc. IEEE INFOCOM, New York.

    Google Scholar 

  2. Ding, J. W., Lin, C. T., & Lan, S. Y. (2008). A unified approach to heterogeneous video-on-demand broadcasting. IEEE Transactions on Broadcasting, 54(1), 14–23.

    Article  Google Scholar 

  3. Gourraud, C. (2007). Using IMS as a service framework. IEEE Vehicular Technology Magazine, 2(1), 4–11.

    Article  Google Scholar 

  4. Hu, A. (2001). Video-on-demand broadcasting protocols: a comprehensive study. In Proceedings of IEEE INFOCOM 2001, vol. 1 (pp. 508–517).

    Google Scholar 

  5. Hua, K. A., & Sheu, S. (1997). Skyscraper broadcasting: a new broadcasting scheme for metropolitan video-on-demand systems. In Proc. ACMSIGCOMM, Cannes, France, Sept. 1997 (pp. 89–100).

    Google Scholar 

  6. Hua, K. A., & Sheu, S. (1997). Skyscraper broadcasting: a new broadcasting scheme for metropolitan video-on-demand systems. In Proc. ACM SIGCOMM’97 (pp. 89–99).

    Google Scholar 

  7. Hua, K. A., Tantaoui, M. A., & Tavanapong, W. (2004). Video delivery technologies for large-scale deployment of multimedia applications. Proceedings of the IEEE, 92(9), 1439–1451.

    Article  Google Scholar 

  8. Jenkac, H., Stockhammer, T., & Xu, W. (2006). Asynchronous and reliable on-demand media broadcast. IEEE Network, 20(2), 14–20.

    Article  Google Scholar 

  9. Juhn, L., & Tseng, L. (1997). Harmonic broadcasting for video-on-demand service. IEEE Transactions on Broadcasting, 43(3), 268–271.

    Article  Google Scholar 

  10. Juhn, L.-S., & Tseng, L.-M. (1998). Fast data broadcasting and receiving scheme for popular video service. IEEE Transactions on Broadcasting, 44(1), 100–105.

    Article  Google Scholar 

  11. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. New York: Wiley.

    Google Scholar 

  12. Kim, J. G., & Krunz, M. M. (2000). Bandwidth allocation in wireless networks with guaranteed packet-loss performance. IEEE/ACM Transactions on Networking, 8, 337–349.

    Article  Google Scholar 

  13. Knightson, K., Morita, N., & Towle, T. (2005). NGN architecture: generic principles, functional architecture, and implementation. IEEE Communication Magazine, 43(10), 49–56.

    Article  Google Scholar 

  14. Lee, W. C. Y. (1993). Mobile communications design fundamentals (2nd edn.). New York: Wiley.

    Book  Google Scholar 

  15. Lee, T.-W. A., Chan, S.-H.G., Zhang, Q., Zhu, W.-W., & Zhang, Y.-Q. (2002). Allocation of layer bandwidths and FECs for video multicast over wired and wireless networks. IEEE Transactions on Circuits and Systems for Video Technology, 12(12), 1059–1070.

    Article  Google Scholar 

  16. Lin, C. T., & Ding, J. W. (2006). CAR: a low latency video-on-demand broadcasting scheme for heterogeneous receivers. IEEE Transactions on Broadcasting, 52(3), 336–349.

    Article  Google Scholar 

  17. Mahanti, A., Eager, D. L., Vernon, M. K., & Sundaram-Stukel, D. J. (2003). Scalable on-demand media streaming with packet loss recovery. IEEE/ACM Transactions on Networking, 11(2), 195–209.

    Article  Google Scholar 

  18. Majumda, A., Sachs, D. G., Kozintsev, I. V., Ramchandran, K., & Yeung, M. M. (2002). Multicast and unicast real-time video streaming over wireless LANs. IEEE Transactions on Circuits and Systems for Video Technology, 12(6), 524–534.

    Article  Google Scholar 

  19. Moon, S.-T., & Kim, J. W. (2007). Network-adaptive selection of transport error control (NASTE) for video streaming over WLAN. IEEE Transactions on Consumer Electronics, 53(4), 1440–1448.

    Article  Google Scholar 

  20. Nafaa, A., Taleb, T., & Murphy, L. (2008). Forward error correction strategies for media streaming over wireless networks. IEEE Communications Magazine, 46(1), 72–79.

    Article  Google Scholar 

  21. Paris, J. F. (1998). A simple low-bandwidth broadcasting protocol for video on demand. In Proc. int. conf. computer communications and networks (pp. 118–123).

    Google Scholar 

  22. Paris, J.-F., Carter, S. W., & Long, D. D. E. (1998). Efficient broadcasting protocols for video on demand. In Prof. of 6th int. symposium on modeling, analysis and simulation of computer and telecommunication systems (MASCOTS’98), July 1998 (pp. 127–132).

    Google Scholar 

  23. Paris, J.-F., Carter, S. W., & Long, D. D. E. (1998). A low bandwidth broadcasting protocol for video on demand. In Proc. of IEEE int’l conference on computer communications and networks (IC3N’98).

    Google Scholar 

  24. Pentikousis, K. (2000). TCP in wired-cum-wireless environments. IEEE Communications Surveys, 3(4), 2–14.

    Article  Google Scholar 

  25. van der Schaar, M., Krishnamachari, S., Choi, S., & Xu, X. (2003). Adaptive cross-layer protection strategies for robust scalable video transmission over 802.11 WLANs. IEEE Journal on Selected Areas in Communications, 21(10), 1752–1763.

    Article  Google Scholar 

  26. Seeling, P., Reisslein, M., & Kulapala, B. (2004). Network performance evaluation using frame size and quality traces of single-layer and two-layer video: a tutorial. IEEE Communications Surveys and Tutorials, 6(2), 58–78.

    Article  Google Scholar 

  27. Tseng, Y.-C., Yang, M.-H., & Chang, C.-H. (2002). A recursive frequency-splitting scheme for broadcasting hot videos in VOD service. IEEE Transactions on Communications, 50(8), 1348–1355.

    Article  Google Scholar 

  28. Viswanathan, S., & Imielinski, T. (1996). Metropolitan area video-on-demand service using pyramid broadcasting. Multimedia Systems, 4, 179–208.

    Article  Google Scholar 

  29. Video Traces Research Group [Online]. Available: http://trace.eas.asu.edu/.

  30. Wang, Y., & Zhu, Q.-F. (1998). Error control and concealment for video communication: a review. Proceedings of the IEEE, 86(5), 974–997.

    Article  Google Scholar 

  31. Wicker, S. B. (1994). Error control systems for digital communication and storage. New York: Prentice-Hall.

    Google Scholar 

  32. Wu, D., Hou, Y. T., & Zhang, Y.-Q. (2001). Scalable video coding and transport over broadband wireless networks. Proceedings of the IEEE, 89(1), 6–20.

    Article  Google Scholar 

  33. Wu, Y., Pliszka, E., Caron, B., Bouchard, P., & Chouinard, G. (2000). Comparison of terrestrial DTV transmission systems: the ATSC 8-VSB, the DVB-T COFDM, and the ISDB-T BST-OFDM. IEEE Transactions on Broadcasting, 46(2), 101–113.

    Article  Google Scholar 

  34. Yousefi’zadeh, H., Jafarkhani, H., & Habibi, A. (2006). Layered media multicast control (LMMC): real-time error control. IEEE Transactions on Multimedia, 8(6), 1219–1227.

    Article  Google Scholar 

  35. Zhang, T., & Xu, Y. (1999). Unequal packet loss protection for layered video transmission. IEEE Transactions on Broadcasting, 45(2), 243–252.

    Article  Google Scholar 

  36. Zhang, Q., Xiang, Z., Zhu, W., & Gao, L. (2004). Cost-based cache replacement and server selection for multimedia proxy across wireless Internet. IEEE Transactions on Multimedia, 6(4), 587–598.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hyuk Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, JW., Deng, DJ., Lo, YK. et al. Perceptual quality based error control for scalable on-demand streaming in next-generation wireless networks. Telecommun Syst 52, 445–459 (2013). https://doi.org/10.1007/s11235-011-9447-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9447-y

Keywords

Navigation