Skip to main content
Log in

Highly scalable JPEG image transmission with unequal error protection and optimal feedback

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper investigates the performance of three different Unequal Error Protection (UEP) schemes for progressive JPEG image transmission using delay-constrained hybrid ARQ, with iterative bit and symbol combining. The first UEP scheme considers only the optimization of channel code-rates and keeps the number of retransmissions fixed for all the subbands of the image. The second one optimizes both the channel code-rates and retransmissions, while the third only considers the optimal allocation of retransmission requests. The UEP schemes are designed with two different coding techniques. The first one employs Rate Compatible Punctured Turbo Codes (RCPT) with iterative bit combining and, is suitable for applications requiring high power efficiency. For the second one we propose a new coding strategy, Rate Compatible Punctured Turbo Trellis Coded Modulation (RCPTTCM) with iterative symbol combining, which provides high scalability and bandwidth efficiency. Gains of over 9 dB in Peak-Signal-to-Noise-Ratio are obtained with the UEP schemes as compared to their corresponding Equal Error Protection (EEP) schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nosratinia, A., Lu, J., & Aazhang, B. (2003). Source-channel rate allocation for progressive transmission of images. IEEE Transactions on Communications, 186–196.

  2. Lu, M.-H., Steenkiste, P., & Chen, T. (2007). Time-aware opportunistic relay for video streaming over WLANs. In Multimedia and expo, 2007 IEEE international conference (pp. 1782–1785). 2–5 July 2007.

  3. Liang, L., Salama, P., & Delp, E. J. (2009). Unequal error protection techniques based on Wyner-Ziv coding. EURASIP Journal on Image and Video Processing, 2009, 474689. doi:10.1155/2009/474689.

    Article  Google Scholar 

  4. Al Muhit, A., & Chuah, T. C. (2008). Real-time optimized error protection assignment for scalable image and video over wireless channels. Circuits, Systems, and Signal Processing, 27(5), 657–671.

    Article  Google Scholar 

  5. Agueh, M., & Soude, H. (2009). Optimal layer-based unequal error protection for robust JPEG 2000 images and video transmission over wireless channels. In mmedia, 2009 first international conference on advances in multimedia (pp. 104–109).

  6. Zhang, Q., & Kassam, S. A. (1999). Hybrid ARQ with selective combining for fading channels. IEEE Journal on Selected Areas in Communications, 17(5), 867–880.

    Article  Google Scholar 

  7. Chande, V., Farvarin, N., & Jafarkhani, H. (1999). Image communication over noisy channel with feed-back. In Proc. int. conf. on image processing, Kobe, Japan, October 1999.

  8. Zhai, F., Eisenberg, Y., Pappas, T. N., Berry, R., & Katsaggelos, A. K. (2006). Rate-distortion optimized hybrid error control for real-time packetized video transmission. IEEE Transactions on Image Processing, 15(1).

  9. van der Schaar, M., Krishnamachari, S., Choi, S., & Xu, X. (2003). Adaptive cross-layer protection strategies for robust scalable video transmission over 802.11 WLANS. IEEE Journal on Selected Areas in Communications, 21(10).

  10. Fowdur, T. P., & Soyjaudah, K. M. S. (2008). Robust JPEG image transmission using unequal error protection and code combining. International Journal of Communications Systems, 21, 1–24. Published Online 17 Jan 2007, in Wiley InterScience. doi:10.1002/dac.875.

    Article  Google Scholar 

  11. Redmill, D. W., & Kingsbury, N. G. (1996). The EREC: an error-resilient technique for coding variable-length blocks of data. IEEE Transactions on Image Processing, 5.

  12. Wang, Y., & Lin, S. (2002). Error-resilient video coding using multiple description motion compensation. IEEE Transactions on Circuits and Systems for Video Technology, 438–452.

  13. Perkis, A. (2001). On the importance of error resilience in visual communications over noisy channels. Circuits Systems Signal Processing, 20(3), 415–446.

    Article  Google Scholar 

  14. Sabir, M. F., Sheikh, H. R., Heath, R. W. Jr., & Bovik, A. C. (2004). A joint source-channel distortion model for JPEG compressed images. In Proceedings of the 2004 international conference on image processing (ICIP 2004), Singapore, October, 24–27, 2004 (pp. 3249–3252).

  15. The Math Works ©Optimisation Toolbox, Matlab, User’s Guide.

  16. Byrd, R. H., Gilbert, J. C., & Nocedal, J. (2000). A trust region method based on interior point techniques for nonlinear programming. Mathematical Programming, 89(1), 149–185.

    Article  Google Scholar 

  17. Hagenauer, J., Offer, E., & Papke, L. (1996). Iterative decoding of binary block and convolutional codes. IEEE Transactions on Information Theory, 42, 429–445.

    Article  Google Scholar 

  18. Acıkel, O. F., & Ryan, W. E. (1999). Punctured turbo-codes for BPSK/QPSK channel. IEEE Transactions on Communications, 47(9).

  19. Vucetic, B., & Yuan, J. (2000). Turbo codes: principles and applications. Dordrecht: Kluwer Academic.

    Google Scholar 

  20. Narayanan, K. R., & Stüber, G. L. (1997). A novel ARQ technique using the turbo coding principle. IEEE Communications Letters, 49–51.

  21. Uhlemann, E., Aulin, T. M., Rasmussen, L. K., & Wiberg, P.-A. (2003). Packet combining and doping in concatenated hybrid ARQ schemes using iterative decoding. In Proc. IEEE wireless communications and networking conference, New Orleans, LA, March 2003 (pp. 849–854).

  22. Sabir, M. F., Heath, R. W. Jr., & Bovik, A. C. (2004). An unequal power allocation scheme for JPEG image transmission. In International conference on computing, communications and control technologies: CCCT’04, Austin, TX, August 14–17, 2004 (Vol. V, pp. 346–350).

  23. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  24. ssim-index-code from http://www.ece.uwaterloo.ca/~z70wang/research/ssim/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Fowdur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowdur, T.P., Soyjaudah, K.M.S. Highly scalable JPEG image transmission with unequal error protection and optimal feedback. Telecommun Syst 49, 355–377 (2012). https://doi.org/10.1007/s11235-010-9379-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-010-9379-y

Keywords

Navigation