Skip to main content
Log in

QoS-constraint multicast restoration with 2-tuple domination core nodes selection in DWDM mesh networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Internet Service Providers (ISP) need to support Quality-of-Service (QoS) constrains in Internet multicast applications which are often delay-sensitive and demanding on network resources. This paper proposes a QoS-constraint multicast restoration scheme in WDM mesh networks based on 2-tuple domination core node selection algorithm which minimization of total network resources in “hop-count” as metric while meeting the “delay-constraint” as a second metric. The primary aim of this work is to provide fast inter- and intra-domain routings and steady local survivability with QoS-constraints based on the information obtained from the core nodes. Our simulation results show that the proposed algorithm outperforms the Dual Tree and MRLR algorithms in terms of the minimum restoration time needed for all recovery paths, blocking probability based on the minimum restoration time, instead of minimum hop count in our previous study [1], for different network topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaminow, I. P. et al. (1996). A wideband all-optical WDM network. IEEE Journal on Selected Areas in Communications 14(5), 780–799.

    Article  Google Scholar 

  2. Savola, P. (2008). Overview of the Internet multicast routing architecture (Technical Memo), RFC 5110.

  3. Chakraborty, D., Zabir, S. M. S., Chayabejara, A., & Chakraborty, G. (2004). A distributed routing method for dynamic multicasting. Telecommunication Systems, 25(3–4) 299–315.

    Article  Google Scholar 

  4. Sahasrabubuddhe, L., & Mukherjee, B. (1999). Light trees: optical multicasting for improved performance in wavelength routed networks. IEEE Communications Magazine, 37(2), 67–73.

    Article  Google Scholar 

  5. Chang, C. Y., & Kuo, S. Y. (2003). Design and analysis of a multicasting and fault-tolerant optical crossconnect for all optical networks. Photonic Network Communications, 6(3), 223–238.

    Article  Google Scholar 

  6. Waitzman, D. et al. (1998). Distance vector multicast routing protocol (Technical Memo). RFC 1075.

  7. Adams, A. et al. (2005). Protocol independent multicast-dense mode (PIM-DM) (Technical Memo). RFC 3973.

  8. Moy, J. (1994). Multicast extensions to OSPF (Technical Memo). RFC 1584.

  9. Ballardie, A., Cain, B., & Zhang, Z. (1998). Core-based trees (CBT version 3) multicast routing (Technical Memo). RFC 2189.

  10. Estrin, D. et al. (2006). Protocol independent multicast-sparse mode (PIM-SM) (Technical Memo). RFC 4601.

  11. Harary, F., & Haynes, T. W. (2000). Double domination in graphs. Ars Combinatoria, 55, 201–213.

    Google Scholar 

  12. Shang, W., Wan, P., Yao, F., & Hu, X. (2007). Algorithms for minimum m-connected k-tuple dominating set problem. Theoretical Computer Science, 381(1–3), 241–247.

    Article  Google Scholar 

  13. Wang, J., Qi, X., & Yang, M. (2006). Routing and wavelength assignment for core-based tree in WDM networks. Computer Communications, 29(11), 1896–1904.

    Article  Google Scholar 

  14. Karaman, A., & Hassanein, H. (2006). Core-selection algorithms in multicast routing - comparative and complexity analysis. Computer Communications, 29(8), 998–1014.

    Article  Google Scholar 

  15. Zappala, D., & Fabbri, A. (2002). An evaluation of shared multicast trees with multiple active cores. Journal of Telecommunication Systems, 19(3), 461–479.

    Article  Google Scholar 

  16. Karaman, A., & Hassanein, H. (2007). QoS-constrained core selection for group communication. Computer Communications, 30(7), 1600–1612.

    Article  Google Scholar 

  17. Maier, G., Pattavina, A., Patre, S. D., & Martinelli, M. (2002). Optical network survivability: protection techniques in the WDM layer. Photonic Network Communications, 4(3), 251–269.

    Article  Google Scholar 

  18. Ellinas, G., Hailermariam, A. G., & Stern, T. E. (2000). Protection cycles in mesh WDM networks. IEEE Journal on Selected Areas in Communications, 18(10), 1924–1937.

    Article  Google Scholar 

  19. Wasem, O. J. (1991). An algorithm for designing rings for survivable fiber networks. IEEE Transactions on Reliability, 40(4), 428–432.

    Article  Google Scholar 

  20. Schupke, D. A., Gruber, C. G., & Autenrieth, A. (2008). Optimal configuration of p-cycles in WDM networks, In IEEE international conference on communications. Beijing, China, Vol. 5, pp. 2761–2765.

  21. Hwang, I. S., Cheng, R. Y., & Tseng, W. D. (2007). A novel dynamic multiple ring-based local restoration for point-to-multipoint multicast traffic in WDM mesh networks. Photonic Network Communications, 14(1), 23–33.

    Article  Google Scholar 

  22. Hwang, I. S., Huang, I. F., & Chien, C. C. (2005). A novel dynamic fault restoration mechanism using a multiple ring approach in WDM mesh networks. Photonic Network Communications, 10(1), 87–105.

    Article  Google Scholar 

  23. Medard, M., Finn, S. G., Barry, R. A., & Gallager, R. G. (1999). Redundant trees for preplanned recovery in arbitrary vertex-redundant or edge-redundant graphs. IEEE/ACM Transactions on Networking, 7(5), 641–652.

    Article  Google Scholar 

  24. Fei, A., Cui, J., Gerla, M., & Cavendish, D. (2001). A dual-tree scheme for fault-tolerant multicast. In IEEE international conference on communications, pp. 690–694. Helsinki, Finland, Vol. 3.

  25. Boworntummarat, C., Wuttisittikulkij, L., & Segkhoonthod, S. (2004). Light-tree based protection strategies for multicast traffic in transport WDM mesh networks with multi-fiber systems. In IEEE international conference on communications, pp. 1791–1795. Paris, France, Vol. 3.

  26. Zhang, F., & Zhong, W. D. “A heuristic algorithm of p-cycle based tree protection of optical multicast traffic in WDM mesh networks. In Opto-electronics and communications conference, pp. 1–2.

  27. Xu, D., Xiong, Y., & Qiao, C. (2003). Novel algorithms for shared segment protection. IEEE Journal on Selected Areas in Communications, 21(8), 1320–1331.

    Article  Google Scholar 

  28. Liao, L., Li, L., & Wang, S. (2008). Multicast protection scheme in survivable WDM optical networks. Journal of Network and Computer Applications, 31(3), 303–316.

    Article  Google Scholar 

  29. Hahm, J. H. et al. (2001). Restoration mechanisms and signaling in optical networks (Internet Draft). Draft-many-optical-restoration-02.txt.

  30. Assi, C. M., Shami, A., Ali, M. A., Zhang, Z., & Liu, X. (2002). Impact of wavelength converters on the performance of optical networks. Optical Networks Magazine, 3(2), 22–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Shyan Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, IS., Shyu, ZD., Yang, CZ. et al. QoS-constraint multicast restoration with 2-tuple domination core nodes selection in DWDM mesh networks. Telecommun Syst 49, 287–298 (2012). https://doi.org/10.1007/s11235-010-9377-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-010-9377-0

Keywords

Navigation