Skip to main content
Log in

Joint assessment of Network- and Perceived-QoS in video delivery networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Given the increasing number of IP streaming video customers, service providers are seeking an efficient way to monitor in real time the offered quality of service, as perceived by each end user. Since real-time video quality assessment via image processing algorithms is quite bandwidth- and processing-power-demanding, a feasible alternative could be to monitor the Network-level Quality of Service (NQoS) and associate it with the Perceived QoS (PQoS). This article presents a network-agnostic framework for the joint assessment of N- and P-QoS, with the aim of correlating these two parameters for a specific network and service configuration. This framework/architecture is implemented with open source software tools and is being demonstrated in an actual WiMAX streaming video distribution platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Claypool, M., & Tanner, J. (1999). The effects of jitter on the peceptual quality of video. In Proceedings of the seventh ACM international conference on multimedia, Part 2, MULTIMEDIA ’99, Orlando, Florida, United States, October 30–November 05, 1999 (pp. 115–118). New York: ACM. doi:10.1145/319878.319909.

    Chapter  Google Scholar 

  2. Gulliver, S. R., & Ghinea, G. (2007). The perceptual and attentive impact of delay and jitter in multimedia delivery. IEEE Transactions on Broadcasting, 53(2), 449–458.

    Article  Google Scholar 

  3. Boyce, J. M., & Gaglianello, R. D. (1998). Packet loss effects on MPEG video sent over the public Internet. In Proceedings of the sixth ACM international conference on multimedia, MULTIMEDIA ’98, Bristol, United Kingdom, September 13–16, 1998 (pp. 181–190). New York: ACM. doi:10.1145/290747.290770.

    Chapter  Google Scholar 

  4. Stuhlmuller, K., Farber, N., Link, M., & Girod, B. (2000). Analysis of video transmission over lossy channels. IEEE Journal on Selected Areas in Communications, 18(6), 1012–1032.

    Article  Google Scholar 

  5. Lin, C., Ke, C., Shieh, C., & Chilamkurti, N. (2006). The packet loss effect on MPEG video transmission in wireless networks. In Proc. IEEE AINA ’06.

  6. Zhang, F., Macnicol, J., Pickering, M. R., Frater, M. R., & Arnold, J. F. (2006). Efficient streaming packet video over differentiated services networks. IEEE Transactions on Multimedia, 8(5), 1005–1010.

    Article  Google Scholar 

  7. Zhang, F., Pickering, M. R., Frater, M. R., & Arnold, J. F. (2003). Optimal QoS mapping for streaming video over differentiated services networks. Proceedings of the IEEE International Conference on Speech, and Signal Processing, ICASSP, 5, 744–747.

    Google Scholar 

  8. Shin, J., Kim, J. W., & Kuo, C.-C. J. (2001). Quality-of-service mapping mechanism for packet video in differentiated services network. IEEE Transactions on Multimedia, 3(2), 219–231.

    Article  Google Scholar 

  9. Ahmed, T., Mehaoua, A., & Buridant, G. (2001). Implementing MPEG-4 video on demand over IP differentiated services. In IEEE global telecom conference records (pp. 2489–2493).

  10. Kusmierek, E., & Du, D. H. (2005). Streaming video delivery over Internet with adaptive end-to-end QoS. The Journal of Systems and Software, 75(3), 237–252. doi:10.1016/j.jss.2003.12.034.

    Article  Google Scholar 

  11. Ginea, G., & Thomas, J. P. (1998). QoS impact on user perception and understanding of multimedia video clips. In Proceedings of the sixth ACM international conference on multimedia, MULTIMEDIA ’98, Bristol, United Kingdom, September 13–16, 1998 (pp. 49–54). New York: ACM. doi:10.1145/290747.290754.

    Chapter  Google Scholar 

  12. Koumaras, H., Liberal, F., & Sun, L. (2008). PQoS assessment methods for multimedia services, chapter contribution. In Cranley, N., & Murphy, L. (Eds.) Wireless multimedia: quality of service and solutions. Hershey: IGI Global. ISBN: 978-1-59904-820-8.

    Google Scholar 

  13. Pinson, M., & Wolf, S. (2004). A new standardized method for objectively measuring video quality. IEEE Transactions on Broadcasting, 50(3), 312–322.

    Article  Google Scholar 

  14. He, Z., & Xiong, H. (2006). Transmission distortion analysis for real-time video encoding and streaming over wireless networks. IEEE Transactions on Circuits and Systems for Video Technology, 16(9), 1051–1062.

    Article  Google Scholar 

  15. Koumaras, H., Kourtis, A., Lin, C.-H., & Shieh, C.-K. (2009). A theoretical framework for end-to-end video quality prediction of MPEG-based sequences. International Journal on Advances in Networks and Services, 1(1).

  16. Media Encoder, Mencoder. On-line: http://www.mplayerhq.hu.

  17. Live555 Streaming Media. On-line: http://www.live555.com/.

  18. Video Quality Measurement software. On-line: http://www.its.bldrdoc.gov/vqm/.

  19. Darwin Streaming Server. On-line: http://developer.apple.com/opensource/server/streaming/index.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Gardikis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardikis, G., Xilouris, G., Pallis, E. et al. Joint assessment of Network- and Perceived-QoS in video delivery networks. Telecommun Syst 49, 75–84 (2012). https://doi.org/10.1007/s11235-010-9354-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-010-9354-7

Keywords

Navigation