Telecommunication Systems

, Volume 42, Issue 1–2, pp 139–149 | Cite as

Energy efficient virtual MIMO communication for wireless sensor networks

Article

Abstract

Virtual multiple input multiple output (MIMO) techniques are used for energy efficient communication in wireless sensor networks. In this paper, we propose energy efficient routing based on virtual MIMO. We investigate virtual MIMO for both fixed and variable rates. We use a cluster based virtual MIMO cognitive model with the aim of changing operational parameters (constellation size) to provide energy efficient communication. We determine the routing path based on the virtual MIMO communication cost to delay the first node death. For larger distances, the simulation results show that virtual MIMO (2×2) based routing is more energy efficient than SISO (single input single output) and other MIMO variations.

Keywords

Cognitive network Virtual MIMO Space-time block code Diversity Data rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Select Areas in Communications, 16(8), 1451–1458. CrossRefGoogle Scholar
  2. 2.
    Chen, W., Xu, C., Yuan, Y., & Liu, K. (2005). Virtual MIMO protocol based on clustering for wireless sensor network. In Proceedings of the 10th symposium on computers and communications (pp. 335–340) March 2005. Google Scholar
  3. 3.
    Chen, W., Yuan, Y., Xu, C., Liu, K., & Yang, Z. Virtual MIMO protocol based on clustering for wireless sensor network. In Computers and communications, 2005, ISCC 2005, proceedings, 10th IEEE symposium. Google Scholar
  4. 4.
    Cui, S., Goldsmith, A. J., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098. CrossRefGoogle Scholar
  5. 5.
    Cui, S., Goldsmith, A. J., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transaction on Wireless Communication, 4(5), 2349–2360. CrossRefGoogle Scholar
  6. 6.
    Cui, S., Goldsmith, A. J., & Bahai, A. (2006). Cross-layer design of energy-constrained networks using cooperative MIMO techniques. Invited for publication at EURASIP’S Signal Processing Journal, August 2006. Google Scholar
  7. 7.
    del Coso, A., Savazzi, S., Spagnolini, U., & Ibars, C. (2006). A simple transmit diversity technique for wireless communications. In Information sciences and systems, 2006 40th annual conference, March 2006. Google Scholar
  8. 8.
    He, J.-H., & Wu, X.-H. (2007). Variational iteration method: new development and applications. Computers and Mathematics with Applications, 54, 881–894. CrossRefGoogle Scholar
  9. 9.
    IEEE (2006). 802.15.4 standard for information technology. Part 15.4: Wireless medium access control (MAC) and physical layerPHY specification for low-rate wireless personal area networks (WPANS). Google Scholar
  10. 10.
    Jayaweera, S. K. (2004). Energy analysis of MIMO techniques in wireless sensor networks. In 38th Annual conf. on information sciences and systems (CISS 04), Princeton, NJ, Mar. 2004. Google Scholar
  11. 11.
    Jayaweera, S. K. (2005). Energy efficient virtual MIMO-based cooperative communications for wireless sensor networks. In 2nd International conf. on intelligent sensing and information processing and information processing (ICISIP’05), Jan. 2005. Google Scholar
  12. 12.
    Jayaweera, S. K. (2006). Virtual MIMO-based cooperative communication for energy-constrained wireless sensor networks. IEEE Transaction Wireless Communication, 5(5), 984–989. CrossRefGoogle Scholar
  13. 13.
    Jayaweera, S. K. (2004). An energy-efficient virtual MIMO communications architecture based on V-BLAST processing for distributed wireless sensor networks. In IEEE SECON 2004 (pp. 299–308). doi: 10.1109/SAHON.2004.1381930.
  14. 14.
    Liu, W., & Xiaohua Li, M. C. (2005). Energy efficiency of MIMO transmissions in wireless sensor networks with diversity and multiplexing gains. Acoustic, Speech and Signal Processing, 4, 897–900. Google Scholar
  15. 15.
    Qing-hua, W., Qu, Y.-g., Lin, Z.-t., & Bai, R.-g. (2007). Protocol for the application of co-operative MIMO based on clustering in sparse wireless sensor networks. The Journal of China Universities of Posts and Telecommunications, 14(2). Google Scholar
  16. 16.
    Qing-hua, W., Qu, Y.-g., Lin, Z.-t., Bai, R.-g., Zhao, B.-h., & Pan, Q.-k. (2007). Protocol for the application of cooperative MIMO based on clustering in sparse wireless sensor networks. The Journal of China Universities of Posts and Telecommunications, 14(2). Google Scholar
  17. 17.
    Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765. CrossRefGoogle Scholar
  18. 18.
    Yuan, Y., He, Z., & Chen, M. (2006). Virtual MIMO-based cross-layer design for wireless sensor networks. IEEE Transaction, Vehicular Technology, 55(3), 856–864. CrossRefGoogle Scholar
  19. 19.
    Yuan, Y., & He, Z. (2006). A novel cluster-based co-operative MIMO scheme for multi-hop wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2006(72493), 1–9. CrossRefGoogle Scholar
  20. 20.
    Zhang, Y., & Dai, H. (2007). Energy-efficiency and transmission strategy selection in cooperative wireless sensor Networks. Journal of Communications and Networks, 9(4), 473–481. Google Scholar
  21. 21.
    Zheng, L., & Tse, D.N.C. (2003). Diversity and multiplexing: a fundamental trade-off in multiple antenna channels. IEEE Transactions on Information Theory, 49(4), 1073–1096. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Jodrey School of Computer ScienceAcadia UniversityWolfvilleCanada
  2. 2.Department of Computer Science and EngineeringKyungnam UniversityKyungnamKorea

Personalised recommendations