Skip to main content
Log in

Wavelength allocation in an optical switch with a fiber delay line buffer and limited-range wavelength conversion

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper presents an approach to evaluate the performance of an optical switch equipped with both limited-range wavelength conversion and Fiber Delay Lines to resolve contention. We propose an analytical model that allows a general behavior for the packet size distribution while the inter-arrival times are assumed to be of Phase-Type and can easily be relaxed to be generally distributed if needed. As the set of reachable wavelengths is a major issue in limited-range wavelength conversion, we first focus on a simple wavelength set configuration that allows the comparison of different policies and their effect on the loss rate of the system. In addition, a linear association between the loss rate of the simple and a more complex set configuration is identified. Using this association and the results from the analytical model, we derive an approximation for the more complex case, where the interactions among adjacent wavelengths play an important role. The approximation works well for different parameter instances and is particularly useful for the mid load case, when simulations become computationally prohibitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akar, N., Karasan, E., & Dogan, K. (2006). Wavelength converter sharing in asynchronous optical packet/burst switching: an exact blocking analysis for Markovian arrivals. IEEE Journal on Selected Areas in Communications, 24, 69–80.

    Article  Google Scholar 

  2. Akar, N., Karasan, E., Muretto, G., & Raffaelli, C. (2007). Performance analysis of an optical packet switch employing full/limited range share per node wavelength conversion. In Proceedings of IEEE Globecom 2007.

  3. Callegati, F., Cerroni, W., Corazza, G., Develder, C., Pickavet, M., & Demeester, P. (2004). Scheduling algorithms for a slotted packet switch with either fixed or variable lengths packets. Photonic Network Communications, 8, 163–176.

    Article  Google Scholar 

  4. Callegati, F., Cerroni, W., Rafaelli, C., & Zaffoni, P. (2004). Wavelength and time domain exploitation for QoS management in optical packet switches. Computer Networks, 44, 569–582.

    Article  Google Scholar 

  5. Dogan, K., Gunulay, Y., & Akar, N. (2007). A comparative study of limited range wavelength conversion policies for asynchronous optical packet switching. Journal of Optical Networking, 6, 134–145.

    Article  Google Scholar 

  6. Gauger, C. M. (2004). Optimized combination of converter pools and FDL buffers for contention resolution in optical burst switching. Photonic Network Communications, 8, 139–148.

    Article  Google Scholar 

  7. Latouche, G., & Ramaswami, V. (1999). ASA-SIAM series on statistics and applied probability. Introduction to matrix analytic methods in stochastic modeling. Philadelphia: SIAM.

    Google Scholar 

  8. Laevens, K., Moeneclaey, M., & Bruneel, H. (2006). Queueing analysis of a single-wavelength fiber-delay-line buffer. Telecommunication Systems, 31, 259–287.

    Article  Google Scholar 

  9. Lambert, J., Van Houdt, B., & Blondia, C. (2006). Queues with correlated inter-arrival and service times and its application to optical buffers. Stochastic Models, 22(2), 233–251.

    Article  Google Scholar 

  10. Law, A. W., & Kelton, W. D. (2000). Simulation modeling and analysis (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  11. Neuts, M. F. (1981). Matrix-geometric solutions in stochastic models. Baltimore: John Hopkins University Press.

    Google Scholar 

  12. Perros, H. (2005). Connection-oriented networks: SONET/SDH, ATM, MPLS and optical networks. New York: Wiley.

    Book  Google Scholar 

  13. Puttasubbapa, V., & Perros, H. (2006). Performance analysis of limited-range wavelength conversion in an OBS switch. Telecommunication Systems, 31, 227–246.

    Article  Google Scholar 

  14. Qiao, J., & Yoo, M. (1999). Optical burst switching: A new paradigm for an optical Internet. Journal of High-Speed Networks, 8, 69–84.

    Google Scholar 

  15. Rogiest, W., Laevens, K., Fiems, D., & Bruneel, H. (2006). Quantifying the impact of wavelength conversion on the performance of fiber delay line buffers. In Proceedings of the sixth international workshop on optical burst/packet switching, WOBS 2006.

  16. Rogiest, W., Fiems, D., Laevens, K., & Bruneel, H. (2007). Tracing an optical buffer’s performance: an effective approach. In Proceedings of the first Euro-FGI international conference on network control and optimization, NET-COOP 2007.

  17. Sharma, V., & Varvarigos, E. (1998). Limited wavelength translation in all-optical WDM mesh networks. In Proceedings of the IEEE Infocom’98.

  18. Shen, G., Bose, S., Cheng, T., Lu, C., & Chai, T. (2001). Performance study on a WDM packet switch with limited-range wavelength converters. IEEE Communications Letters, 5(10), 432–434.

    Article  Google Scholar 

  19. Turner, J. (1999). Terabit burst switching. Journal of High-Speed Networks, 8, 3–16.

    Google Scholar 

  20. Van Houdt, B., Laevens, K., Lambert, J., Blondia, C., & Bruneel, H. (2004). Channel utilization and loss rate in a single-wavelength Fibre Delay Line (FDL) buffer. In Proceedings of IEEE Globecom 2004.

  21. Yates, J., Lacey, J., Everitt, D., & Summerfield, M. (1996). Limited-range wavelength translation in all-optical networks. In Proceedings of the IEEE Infocom’96.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Pérez.

Additional information

This work has been supported by the FWO-Flanders through project “Stochastic modeling of optical buffers and switching systems based on Fiber Delay Lines” (G.0538.07).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, J.F., Van Houdt, B. Wavelength allocation in an optical switch with a fiber delay line buffer and limited-range wavelength conversion. Telecommun Syst 41, 37–49 (2009). https://doi.org/10.1007/s11235-009-9149-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-009-9149-x

Keywords

Navigation