Skip to main content
Log in

Extending EDCA with distributed resource reservation for QoS guarantees

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper we describe how the contention-based medium access mechanism of 802.11e, EDCA, can be enhanced in order to allow stations to reserve medium access for their real-time applications with QoS requirements. We present our proposed scheme, which is called EDCA with resource reservation (EDCA/RR), and describe how it can be extended in order to be used in wireless multi-hop networks. EDCA/RR operates in a completely distributed manner and manages to provide deterministic, contention-free medium access, making it an attractive scheme for wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ANSI/IEEE. (1999). Std 802.11 Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications.

  2. IEEE. (2005). Std 802.11e Part11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications—Amendment 8: Medium Access Control (MAC) Quality of Service (QoS) enhancements.

  3. ECMA. (2005). ECMA-368: High rate ultra wideband PHY and MAC standard (1st ed.).

  4. Koga, H., Kashihara, S., Fukuda, Y., & Oie, K. I. Y. (2006). Quality-aware VoWLAN architecture and its quantitative evaluation. IEEE Wireless Communications.

  5. Shah, S. H., Chen, K., & Nahrstedt, K. (2005). Dynamic bandwidth management in single-hop ad hoc wireless networks. Mobile Networks and Applications.

  6. Sivavakeesar, S., & Pavlou, G. (2004). Quality of service AwareMAC based on IEEE 802.11 for multihop ad-hoc networks. In Wireless communications and networking conference (WCNC).

  7. Yang, Y., & Kravets, R. (2004). Distributed QoS guarantees for realtime traffic in ad hoc networks. In First annual IEEE communications society conference on sensor and ad hoc communications and networks (IEEE SECON).

  8. Wu, S. L., Lin, C. Y., Tseng, Y. C., & Sheu, J. L. (2000). A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile ad hoc networks. In International symposium on parallel architectures, algorithms and networks (I-SPAN).

  9. Romdhani, L., Ni, Q., & Turletti, T. (2003). Adaptive EDCF: enhanced service differentiation for 802.11 wireless ad-hoc networks. In Proceedings of IEEE wireless communication and networking conference.

  10. Iera, A., Molinaro, A., Ruggeri, G., & Tripodi, D. (2005). Improving QoS and throughput in single- and multihop WLANs through dynamic traffic prioritization. IEEE Network, 19(4).

  11. Hwang, I., & Wang, C. (2004). Improving the QoS performance of EDCA in IEEE 802.11e WLANs using fuzzy set theory. In Active networking workshop.

  12. Pattara-Atikom, W., & Krishnamurthy, P. (2003). Distributed mechanisms for quality of service in wireless LANs. IEEE Wireless Communications Magazine.

  13. Hiertz, G. R., Habetha, J., May, P., Weib, E., Bagul, R., & Mangold, S. (2003). A decentralized reservation scheme for IEEE 802.11 ad hoc networks. In Proceedings of the 14th international symposium on personal, indoor and mobile radio communications.

  14. Carlson, E., Prehofer, C., Bettstetter, C., & Wolisz, A. (2006). A distributed end-to-end reservation protocol for IEEE 802.11-based wireless mesh networks. Journal on Selected Areas in Communications (JSAC). Special issue on multi-hop wireless mesh networks.

  15. Gao, D., Cai, J., & Ngan, K. N. (2005). Admission control in IEEE 802.11e wireless LANs. IEEE Network, July/August 2005.

  16. Gao, D., Cai, J., & Zhang, L. (2005). Physical rate based admission control for HCCA in IEEE 802.11e WLANs. In Proceedings of the 19th international conference on advanced information networking and applications (AINA).

  17. Fan, W. F., Gao, D., Tsang, D. H. K., & Bensaou, B. (2004). Admission control for variable bit rate traffic in IEEE 802.11e WLANs. In IEEE LANMAN, April 2004.

  18. Fan, W. F., Tsang, D. H. K., & Bensaou, B. (2004). Admission control for variable bit rate traffic using variable service interval in IEEE 802.11e WLANs. In Proceedings of the 13th international conference on computer communications and networks (ICCCN).

  19. Ansel, P., Ni, Q., & Turletti, T. (2003). FHCF: a fair scheduling scheme for 802.11e WLAN (Technical Report 4883). INRIA Sophia Antipolis, July 2003.

  20. Perkins, C., Belding-Royer, E. M., & Das, S. Ad hoc On-Demand Distance Vector (AODV) routing. IETF. RFC 3561.

  21. Johnson, D., Hu, Y., & Maltz, D. The Dynamic Source Routing protocol (DSR) for mobile ad hoc networks for IPv4. IETF. RFC 4728.

  22. Clausen, T., & Jacquet, P. Optimized Link State Routing Protocol (OLSR). IETF. RFC 3626.

  23. Ogier, R., Templin, F., & Lewis, M. Topology dissemination based on reverse-path forwarding (TBRPF). IETF. RFC 3684.

  24. Ogier, R., Lewis, M., & Templin, F. Dynamic MANET on-demand (DYMO) routing. IETF (Internet-Draft).

  25. Clausen, T., Dearlove, C., & Jacquet, P. The optimized link state routing protocol version 2. IETF (Internet-Draft).

  26. IEEE. (2005). 802.11s Amendment Part11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications—ESS Mesh Networking.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hamidian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamidian, A., Körner, U. Extending EDCA with distributed resource reservation for QoS guarantees. Telecommun Syst 39, 187–194 (2008). https://doi.org/10.1007/s11235-008-9124-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-008-9124-y

Keywords

Navigation