Advertisement

Telecommunication Systems

, Volume 33, Issue 1–3, pp 3–21 | Cite as

gTFRC, a TCP friendly QoS-aware rate control for DiffServ Assured Service

  • Emmanuel Lochin
  • Laurent Dairaine
  • Guillaume Jourjon
Article

Abstract

This study addresses the end-to-end congestion control support over the DiffServ Assured Forwarding (AF) class. The resulting Assured Service (AS) provides a minimum level of throughput guarantee. In this context, this article describes a new end-to-end mechanism for continuous transfer based on TCP-Friendly Rate Control (TFRC). The proposed approach modifies TFRC to take into account the QoS negotiated. This mechanism, named gTFRC, is able to reach the minimum throughput guarantee whatever the flow's RTT and target rate. Simulation measurements and implementation over a real QoS testbed demonstrate the efficiency of this mechanism either in over-provisioned or exactly-provisioned network. In addition, we show that the >frc mechanism can be used in the same DiffServ/AF class with TCP or TFRC flows.

Keywords

Transport Congestion control DiffServ Assured forwarding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Heinanen, F. Baker, W. Weiss and J. Wroclawski, Assured forwarding PHB group, Request for Comments 2597, IETF (1999).Google Scholar
  2. 2.
    J. Postel, Transmission control protocol: Darpa internet program protocol specification, Request for Comments 793, IETF (1981).Google Scholar
  3. 3.
    E. Kohler, M. Handley and S. Floyd, Datagram congestion control protocol (DCCP), Request for Comments 4340, IETF (2006).Google Scholar
  4. 4.
    M. Handley, S. Floyd, J. Pahdye and J. Widmer, TCP-friendly rate control (TFRC): Protocol specification, Request For Comments 3448, IETF (2003).Google Scholar
  5. 5.
    J. Padhye, V. Firoiu, D. Towsley and J. Kurose, Modeling TCP throughput: A simple model and its empirical validation, in: Proc. of ACM SIGCOMM, Vancouver, (CA, 1998) pp. 303–314.Google Scholar
  6. 6.
    N. Seddigh, B. Nandy and P. Pieda, Bandwidth assurance issues for TCP flows in a differentiated services network, in: Proc. of IEEE GLOBECOM, Rio De Janeiro (Brazil, 1999) p. 6.Google Scholar
  7. 7.
    E.C. Park and C.H. Choi, Proportional bandwidth allocation in DiffServ networks, in: Proc. of IEEE INFOCOM (Hong Kong, 2004).Google Scholar
  8. 8.
    J. Heinanen and R. Guerin, A single rate three color marker, Request For Comments 2697, IETF (1999).Google Scholar
  9. 9.
    W. Fang, N. Seddigh, AL, A time sliding window three colour marker, Request For Comments 2859, IETF (2000).Google Scholar
  10. 10.
    M. El-Gendy and K. Shin, Assured forwarding fairness using equation-based packet marking and packet separation, Computer Networks 41(4) (2002) 435–450.Google Scholar
  11. 11.
    A. Feroz, A. Rao, and S. Kalyanaraman, A TCP-friendly traffic marker for ip differentiated services, in: Proc. of IEEE/IFIP International Workshop on Quality of Service -IWQoS (2000).Google Scholar
  12. 12.
    A. Habib, B. Bhargava and S. Fahmy, A round trip time and time-out aware traffic conditioner for differentiated services networks, in: Proc. of the IEEE International Conference on Communications - ICC (New-York, USA, 2002).Google Scholar
  13. 13.
    K. Kumar, A. Ananda and L. Jacob, A memory based approach for a TCP-friendly traffic conditioner in DiffServ networks, in: Proc. of the IEEE International Conference on Network Protocols - ICNP, Riverside (California, USA, 2001).Google Scholar
  14. 14.
    E. Lochin, P. Anelli and S. Fdida, AIMD penalty shaper to enforce assured service for TCP flows, in: Proc. of the International Conference on Networking - ICN, La (Reunion, France, 2005).Google Scholar
  15. 15.
    E. Lochin, P. Anelli and S. Fdida, Penalty shaper to enforce assured service for TCP flows, in: IFIP Networking, (Waterloo, Canada, 2005).Google Scholar
  16. 16.
    B. Nandy, P. Pieda and J. Ethridge, Intelligent traffic conditioners for assured forwarding based differentiated services networks, in: IFIP High Performance Networking (Paris, France, 2000).Google Scholar
  17. 17.
    J. Widmer, Equation-Based congestion control, Diploma thesis, University of Mannheim, Germany (2000).Google Scholar
  18. 18.
    Y.G. Kim and C.C.J. Kuo, TCP-friendly assured forwarding (AF) video service in DiffServ networks, in: IEEE International Symposium on Circuits and Systems (ISCAS) (Bangkok, Thailand, 2003).Google Scholar
  19. 19.
    W. Feng, D. Kandlur, D. Saha and K.S. Shin, Adaptive packet marking for providing differentiated services in the internet, in: Proc. of the IEEE International Conference on Network Protocols - ICNP (1998).Google Scholar
  20. 20.
    M. Singh, P. Pradhan and P. Francis, MPAT: Aggregate TCP congestion management as a building block for internet QoS, in: Proc. of the IEEE International Conference on Network Protocols - ICNP (Berlin, Germany, 2004).Google Scholar
  21. 21.
    R. Hancock, G. Karagiannis and J. Loughney, S.V. den Bosch, Next steps in signaling (nsis): Framework, Request For Comments 4080, IETF (2005).Google Scholar
  22. 22.
    http://www.isi.edu/nsnam/ns/.Google Scholar
  23. 23.
    P. Pieda, J. Ethridge, M. Baines and F. Shallwani, A network simulator differentiated services implementation, Technical Report, Open IP, Nortel Networks (2000).Google Scholar
  24. 24.
    K. Nichols, V. Jacobson and L. Zhang, A two-bit differentiated services architecture for the internet, Request for Comments 2638, IETF (1999).Google Scholar
  25. 25.
    E. Lochin, L. Dairaine and G. Jourjon, gTFRC: a QoS-aware congestion control algorithm, in: Proc. of the International Conference on Networking - ICN (Mauritius, 2006).Google Scholar
  26. 26.
    D. Clark and W. Fang, Explicit allocation of best effort packet delivery service, IEEE/ACM Transactions on Networking 6(4) (1998) 362–373.Google Scholar
  27. 27.
    M. Goyal, A. Durresi, R. Jain and C. Liu, Effect of number of drop precedences in assured forwarding, in: Proc. of IEEE GLOBECOM (1999) pp. 188–193.Google Scholar
  28. 28.
    S. Floyd and K. Fall, Promoting the use of end-to-end congestion control in the Internet, IEEE/ACM Transactions on Networking 7(4) (1999) 458–472.Google Scholar
  29. 29.
    S. Sahu, P. Nain, C. Diot, V. Firoiu and D.F. Towsley, On achievable service differentiation with token bucket marking for TCP, Measurement and Modeling of Computer Systems (2000) 23–33.Google Scholar
  30. 30.
    N. Malouch and Z. Liu, Performance analysis of TCP with RIO routers, in: Proc. of IEEE GLOBECOM (Taipei, Taiwan, 2002) p. 9Google Scholar
  31. 31.
    C. Cicconetti, M. Garcia-Osma, X. Masip, J. Sa Silva, G. Santoro, G. Stea and H. Taraskiuk, Simulation model for end-to-end QoS across heterogeneous networks, In: 3rd International Workshop on Internet Performance, Simulation, Monitoring and Measurement (IPS-MoMe 2005), (Warsaw, 2005).Google Scholar
  32. 32.
    K. Cho, Managing traffic with ALTQ, in: Proceedings of USENIX Annual Technical Conference: FREENIX Track (1999) pp. 121–128.Google Scholar
  33. 33.
    G. Jourjon, E. Lochin, L. Dairaine, P. Senac, T. Moors and A. Seneviratne, Implementation and performance analysis of a QoS-aware TFRC mechanism, in: Proc. of IEEE ICON (Singapore, 2006).Google Scholar
  34. 34.
    E. Exposito, Specification and implementation of a QoS oriented Transport protocol for multimedia applications. Phd thesis, LAAS-CNRS/ENSICA (2003).Google Scholar
  35. 35.
    S. Floyd, E. Kohler, J. Padhye, Profile for DCCP congestion control ID 3: TRFC Congestion Control, Request for Comments 4342, IETF (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Emmanuel Lochin
    • 1
  • Laurent Dairaine
    • 2
  • Guillaume Jourjon
    • 1
    • 2
    • 3
  1. 1.National ICT Australia Ltd.AlexandriaAustralia
  2. 2.LAAS-CNRS/ENSICAToulouse Cedex 4France
  3. 3.The University of New South WalesSydneyAustralia

Personalised recommendations