Skip to main content
Log in

Bosonization of the meson sector of QCD and parity breaking in strong interactions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe a method of the low-energy bosonization of quantum chromodynamics based on the chiral and scale anomalies. We give the values of structure coupling constants for the effective chiral Lagrangian of dimension four obtained by the method of low-energy bosonization and by various alternative approaches. Based on the method of quark bosonization in the meson sector of quantum chromodynamics and a set of other basic principles of quantum chromodynamics, we justify a possibility that spatial parity is broken in a hadron medium in heavy-ion collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Andrianov and Yu. Novozhilov, Phys. Lett. B, 153, 422–426 (1985)

    Article  ADS  Google Scholar 

  2. A. A. Andrianov, Phys. Lett. B, 157, 425-429 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  3. A. A. Andrianov, V. A. Andrianov, Yu. V. Novozhilov, and V. Yu. Novozhilov, Lett. Math. Phys., 11, 217–224 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  4. J. Gasser and H. Leutwyler, Ann. Phys., 158, 142–210 (1984); Nucl. Phys. B, 250, 465–516 (1985).

    Google Scholar 

  5. V. Yu. Novozhilov, Phys.Lett. B, 228, 240–244 (1989).

    Article  ADS  Google Scholar 

  6. V. Novozhilov and Yu. Novozhilov, Phys. Lett. B, 522, 49–56 (2001); arXiv:hep-ph/0110006v2 (2001); Modern Phys. Lett. A, 21, 2649–2661 (2006); arXiv:hep-ph/0605238v1 (2006)

    MATH  Google Scholar 

  7. V. Yu. Novozhilov and Yu. V. Novozhilov, Theor. Math. Phys., 131, 498–505 (2002).

    Article  MATH  Google Scholar 

  8. D. V. Vassilevich, Yu. V. Novozhilov, and A. G. Pronko, Theor. Math. Phys., 101, 1303–1312 (1994)

    Article  Google Scholar 

  9. Yu. Novozhilov, A. Pronko, D. Vassilevich, and A. Korotkov, “Extended chiral group and scalar diquarks,” arXiv:hep-ph/9901255v1 (1999).

    Google Scholar 

  10. N. I. Karchev and A. A. Slavnov, Theor. Math. Phys., 65, 1099–1105 (1985)

    Article  Google Scholar 

  11. J. Balog, Phys. Lett. B, 149, 197–200 (1984)

    Article  ADS  Google Scholar 

  12. D. I. D’yakonov and M. I. Eides, JETP Lett., 38, 433–436 (1983)

    ADS  Google Scholar 

  13. D. Dyakonov and V. Petrov, Nucl. Phys. B, 272, 457–489 (1986)

    Article  ADS  Google Scholar 

  14. L.-H. Chan, Phys. Rev. Lett., 55,21(1985)

    Article  ADS  Google Scholar 

  15. D. Ebert and S. Reinhardt, Phys. Lett. B, 173, 453–458 (1986)

    Article  ADS  Google Scholar 

  16. D. Espriu, E. de Rafael, and J. Taron, Nucl. Phys. B, 345, 22–56 (1990); Nucl. Phys. B, 355, 278–279 (1991).

    Article  Google Scholar 

  17. J. Bijnens and G. Ecker, Ann. Rev. Nucl. Part. Sci., 64, 149–174 (2014); arXiv:1405.6488v2 [hep-ph] (2014).

    Article  ADS  Google Scholar 

  18. M. A. Shifman, Phys. Rep., 209, 341–378 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  19. J. C. Collins, A. Duncan, and S. D. Joglekar, Phys. Rev. D, 16, 438–449 (1977).

    Article  ADS  Google Scholar 

  20. A. A. Andrianov, V. A. Andrianov, Yu. V. Novozhilov, and V. Yu. Novozhilov, Lett. Math. Phys., 11, 217–224 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  21. A. A. Andrianov, V. A. Andrianov, Yu. V. Novozhilov, and V. Yu. Novozhilov, JETP Lett., 43, 7–9 (1986).

    ADS  Google Scholar 

  22. A. A. Andrianov, V. A. Andrianov, Yu. V. Novozhilov, and V. Yu. Novozhilov, Phys. Lett. B, 186, 401–404 (1987).

    Article  ADS  Google Scholar 

  23. A. A. Andrianov, V. A. Andrianov, and A. N. Manashov, Internat. J. Mod. Phys. A, 6, 5435–5445 (1991).

    Article  ADS  Google Scholar 

  24. A. A. Andrianov, V. A. Andrianov, V. Yu. Novozhilov, and Yu. V. Novozhilov, Theor. Math. Phys., 70, 43–51 (1987).

    Article  Google Scholar 

  25. A. A. Andrianov, V. A. Andrianov, and V. L. Yudichev, J. Math. Sci., 88, 142–149 (1998).

    Article  MathSciNet  Google Scholar 

  26. A. A. Andrianov, D. Espriu, and R. Tarrach, Nucl. Phys. B, 533, 429–472 (1998); arXiv:hep-ph/9803232v3 (1998).

    Article  ADS  Google Scholar 

  27. D. Weingarten, Phys. Rev. Lett., 51, 1830–1833 (1983)

    Article  ADS  Google Scholar 

  28. C. Vafa and E. Witten, Phys. Rev. Lett., 53, 535–536 (1984)

    Article  ADS  Google Scholar 

  29. D. Espriu, M. Gross, and J. F. Wheater, Phys. Lett. B, 146, 67–74 (1984).

    Article  ADS  Google Scholar 

  30. D. Kharzeev and R. D. Pisarski, Phys. Rev. D, 61,111901(2000); arXiv:hep-ph/9906401v1 (1999)

    Article  ADS  Google Scholar 

  31. D. Kharzeev, Phys. Lett. B, 633, 260–2644 (2006); arXiv:hep-ph/0406125v2 (2004); Ann. Phys., 325, 205–218 (2010); arXiv:0911.3715v1 [hep-ph] (2009)

    MATH  Google Scholar 

  32. D. Kharzeev and A. Zhitnitsky, Nucl. Phys. A, 797, 67–79 (2007); arXiv:0706.1026v2 [hep-ph] (2007).

    Article  ADS  Google Scholar 

  33. D. Kharzeev, R. D. Pisarski, and M. H. G. Tytgat, Phys. Rev. Lett., 81, 512–515 (1998); arXiv:hep-ph/9804221v2 (1998)

    Article  ADS  Google Scholar 

  34. D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A, 803, 227–253 (2008); arXiv:0711.0950v1 [hep-ph] (2007)

    Article  ADS  Google Scholar 

  35. K. Buckley, T. Fugleberg, and A. Zhitnitsky, Phys. Rev. Lett., 84, 4814–4817 (2000); arXiv:hep-ph/9910229v2 (1999).

    Article  ADS  Google Scholar 

  36. A. A. Andrianov, V. A. Andrianov, D. Espriu, and X. Planells, Phys. Lett. B, 710, 230–235 (2012); arXiv: 1201.3485v3 [hep-ph] (2012); PoS (QFTHEP2011),025(2013).

    Article  ADS  Google Scholar 

  37. P. Wurn et al. [CERES Collab.], Nucl. Phys. A, 590, 103–116 (1995)

    Article  ADS  Google Scholar 

  38. G. Agakichiev et al. [CERES/NA45 Collab.], Eur. Phys. J. C, 4, 231–247 (1998).

    ADS  Google Scholar 

  39. R. Arnaldi et al. [NA60 Collab.], Phys. Rev. Lett., 96,162302(2006).

    Article  ADS  Google Scholar 

  40. A. Adare et al. [PHENIX Collab.], Phys. Rev. C, 81,034911(2010); arXiv:0912.0244v1 [nucl-ex] (2009).

    Article  ADS  Google Scholar 

  41. G. Agakichiev et al. [HADES Collab.], Phys. Rev. Lett., 98,052302(2007); arXiv:nucl-ex/0608031v3 (2006); Phys. Lett. B, 663, 43–48 (2008).

    Article  Google Scholar 

  42. K. O. Lapidus and V. M. Emel’yanov, Phys. Part. Nucl., 40, 29–48 (2009).

    Article  Google Scholar 

  43. I. Tserruya, “Electromagnetic probes,” in: Relativistic Heavy Ion Physics (Landolt–Börnstein—Group I Elem. Part. Nucl. Atoms, Vol. 23, R. Stock, ed.), Springer, Heidelberg (2010), pp. 443–474; arXiv:0903.0415v3 [nucl-ex] (2009)

    Google Scholar 

  44. G. E. Brown and M. Rho, Phys. Rev. Lett., 66, 2720–2723 (1991).

    Article  ADS  Google Scholar 

  45. A. A. Andrianov, V. A. Andrianov, D. Espriu, and X. Planells, Theor. Math. Phys., 170, 17–25 (2012).

    Article  MathSciNet  Google Scholar 

  46. A. A. Andrianov, D. Espriu, and X. Planells, Eur. Phys. J. C, 73,2294(2013); arXiv:1210.7712v1 [hep-ph] (2012).

    Article  ADS  Google Scholar 

  47. V. N. Pervushin, Phys. Part. Nucl., 15, 1073–1110 (1984).

    Google Scholar 

  48. A. A. Belavin, A. M. Polyakov, A. S. Shvarts, and Y. S. Tyupkin, Phys. Lett. B, 59, 85–87 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  49. G. ’t Hooft, Phys. Rev. D, 14, 3432–3450 (1976)

    Article  ADS  Google Scholar 

  50. C. G. Callan, R. F. Dashen, and D. J. Gross, Phys. Lett. B, 63, 334–340 (1976).

    Article  ADS  Google Scholar 

  51. F. R. Klinkhamer and N. S. Manton, Phys. Rev. D, 30, 2212–2220 (1984)

    Article  ADS  Google Scholar 

  52. V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. B, 155, 36–42 (1985)

    Article  ADS  Google Scholar 

  53. L. McLerran, E. Mottola, and M. E. Shaposhnikov, Phys. Rev. D, 43, 2027–2035 (1991)

    Article  ADS  Google Scholar 

  54. G. D. Moore and K. Rummukainen, Phys. Rev. D, 61,105008(2000); arXiv:hepph/9906259v1 (1999)

    Article  ADS  Google Scholar 

  55. E. Shuryak and I. Zahed, Phys. Rev. D, 67,014006(2003); arXiv:hep-ph/0206022v1 (2002).

    Article  ADS  Google Scholar 

  56. R. Rapp and J. Wambach, “Chiral symmetry restoration and dileptons in relativistic heavy-ion collisions,” in: Advances in Nuclear Physics (Adv. Phys. Part. Nucl. (APPN), Vol. 25, J. W. Negele and E. Vogt, eds.), Kluwer, New York (2002), pp. 1–205

    Chapter  Google Scholar 

  57. W. Liu and R. Rapp, Nucl. Phys. A, 796, 101–121 (2007); arXiv:nucl-th/0604031v3 (2006)

    Article  ADS  Google Scholar 

  58. H. van Hees and R. Rapp, Nucl. Phys. A, 806, 339–387 (2008).

    Article  ADS  Google Scholar 

  59. J. J. Sakurai, Ann. Phys., 11, 1–48 (1960); Currents and Mesons, Univ. Chicago Press, Chicago, Ill. (1969).

    Article  MathSciNet  ADS  Google Scholar 

  60. A. A. Andrianov, V. A. Andrianov, D. Espriu, and X. Planells, Phys. Rev. D, 90,034024(2014); arXiv: 1402.2147v3 [hep-ph] (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Andrianov.

Additional information

This research was supported by the Russian Foundation for Basic Research (Grant No. 13-02-00127) and St. Petersburg State University (Grant No. 11.38.660.2013).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 185, No. 1, pp. 12–27, October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianov, A.A., Andrianov, V.A. Bosonization of the meson sector of QCD and parity breaking in strong interactions. Theor Math Phys 185, 1370–1382 (2015). https://doi.org/10.1007/s11232-015-0346-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0346-3

Keywords

Navigation