Skip to main content
Log in

Dipole-based description of the pp interaction

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider inelastic proton–proton interactions at high energies in transverse spatial coordinates. Colliding hadrons are represented as ensembles of color dipoles. We use prescriptions of the M¨uller dipole cascade model for the elementary interaction probability. Multiparton interactions are taken into account in the framework of the eikonal approach. We consider two variants of the model, namely, with and without confinement taken into account. We obtain the asymptotic form of the collision profile function for large impact parameters. We use the considered approach to find the slope of the diffraction cone in elastic pp scattering at high energies and compare our results with other models describing profile functions and with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. McLerran and R. Venugopalan, Phys. Rev. D, 49, 2233–2241 (1994); arXiv:hep-ph/9309289v1 (1993).

    Article  ADS  Google Scholar 

  2. L. McLerran and R. Venugopalan, Phys. Rev. D, 49, 3352–3355 (1994); arXiv:hep-ph/9311205v2 (1993).

    Article  ADS  Google Scholar 

  3. T. Sjostrand and P. Z. Skands, JHEP, 0403, 053 (2004).

    Article  ADS  Google Scholar 

  4. M. Diehl, D. Ostermeier, and A. Schäfer, JHEP, 1203, 089 (2012); arXiv:1111.0910v2 [hep-ph] (2011).

    Article  ADS  Google Scholar 

  5. A. Krasnitz and R. Venugopalan, Nucl. Phys. A, 698, 209–216 (2002); arXiv:hep-ph/0104168v1 (2001).

    Article  ADS  Google Scholar 

  6. A. Ortiz Velasquez, P. Christiansen, E. Cuautle Flores, I. A. Maldonado Cervantes, and G. Paić, Phys. Rev. Lett., 111, 042001 (2013); arXiv:1303.6326v2 [hep-ph] (2013).

    Article  ADS  Google Scholar 

  7. M. Floris, J. Phys.: Conf. Ser., 270, 012046 (2011).

    ADS  Google Scholar 

  8. G. Gustafson, Acta Phys. Polon. B, 40, 1981–1996 (2009); arXiv:0905.2492v1 [hep-ph] (2009).

    ADS  Google Scholar 

  9. K. D. Anderson, D. A. Ross, and M. G. Sotiropoulos, Phys. Lett. B, 380, 127–133 (1996); arXiv:hep-ph/9602275v2 (1996).

    Article  ADS  Google Scholar 

  10. G. Altarelli and G. Parisi, Nucl. Phys. B, 126, 298–318 (1977).

    Article  ADS  Google Scholar 

  11. F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan, Ann. Rev. Nucl. Part. Sci., 60, 463–489 (2010); arXiv:1002.0333v1 [hep-ph] (2010).

    Article  ADS  Google Scholar 

  12. H. Weigert, Prog. Part. Nucl. Phys., 55, 461–565 (2005); arXiv:hep-ph/0501087v1 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  13. A. H. Mueller, Nucl. Phys. B, 415, 373–385 (1994).

    Article  ADS  Google Scholar 

  14. A. H. Mueller and G. P. Salam, Nucl. Phys. B, 475, 293–317 (1996); arXiv:hep-ph/9605302v1 (1996).

    Article  ADS  Google Scholar 

  15. V. V. Vechernin, I. A. Lakomov, and A. M. Puchkov, Vestn. Peterb. Univ. Ser. 4: Fiz. Khim., No. 3, 3–16 (2010).

    Google Scholar 

  16. M. A. Braun and V. V. Vechernin, J. Phys. G, 16, 1615–1626 (1990).

    Article  ADS  Google Scholar 

  17. E. Avsar, G. Gustafson, and L. Lonnblad, JHEP, 0712, 012 (2007); arXiv:0709.1368v3 [hep-ph] (2007).

    ADS  Google Scholar 

  18. C. Flensburg, G. Gustafson, and L. Lonnblad, Eur. Phys. J. C, 60, 233–247 (2009); arXiv:0807.0325v1 [hep-ph] (2008).

    Article  ADS  Google Scholar 

  19. M. Rybczynski and Z. Wlodarczyk, J. Phys. G, 41, 015106 (2013); arXiv:1307.0636v1 [nucl-th] (2013).

    Article  ADS  Google Scholar 

  20. M. A. Braun and V. V. Vechernin, Theor. Math. Phys., 139, 766–786 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  21. I. M. Dremin and V. A. Nechitailo, Nucl. Phys. A, 916, 241–248 (2013); arXiv:1306.5384v2 [hep-ph] (2013).

    Article  ADS  Google Scholar 

  22. V. A. Schegelsky and M. G. Ryskin, Phys. Rev. D, 85, 094024 (2013); arXiv:1112.3243v2 [hep-ph] (2011).

    Article  ADS  Google Scholar 

  23. V. Vechernin and I. Lakomov, PoS (Baldin ISHEPP XXI), 072 (2012); arXiv:1212.2667v1 [nucl-th] (2012).

    Google Scholar 

  24. V. N. Kovalenko, Phys. Atom. Nucl., 76, 1189–1195 (2013); arXiv:1211.6209v2 [hep-ph] (2012).

    Article  ADS  Google Scholar 

  25. V. Kovalenko and V. Vechernin, PoS (Baldin ISHEPP XXI), 077 (2012); arXiv:1212.2590v1 [nucl-th] (2012).

    Google Scholar 

  26. V. Kovalenko, PoS (QFTHEP 2013), 052 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kovalenko.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 184, No. 3, pp. 465–474, September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, V.N. Dipole-based description of the pp interaction. Theor Math Phys 184, 1295–1303 (2015). https://doi.org/10.1007/s11232-015-0337-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0337-4

Keywords

Navigation