Skip to main content
Log in

Exact solution of the’ t Hooft equation in the limit of heavy quarks with unequal masses

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the’ t Hooft equation for bound states in the two-dimensional quantum chromodynamics in the limit of an infinite number of colors. In the case of quarks with unequal masses tending to infinity, we obtain an approximation to the low-energy part of the spectrum and the corresponding wave functions. We show that as in the case of equal masses, the’ t Hooft equation in the first approximation reduces to the Schrödinger equation with a linear potential, i.e., to the equation for a particle in a “triangular” potential well. We also discuss the possibility of obtaining corrections to this approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. ’t Hooft, Nucl. Phys. B, 75, 461–470 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Bassetto, L. Griguolo, and F. Vian, Nucl. Phys. B, 559, 563–590 (1999); arXiv:hep-th/9906125v1 (1999).

    Article  ADS  Google Scholar 

  3. A. Bassetto, L. Griguolo, and F. Vian, “Light-front vacuum and instantons in two-dimensions,” arXiv:hep-th/0004026v1 (2000).

    Google Scholar 

  4. S. A. Paston and V. A. Franke, Theor. Math. Phys., 112, 1117–1130 (1997); arXiv:hep-th/9901110v1 (1999).

    Article  Google Scholar 

  5. S. A. Paston, E. V. Prokhvatilov, and V. A. Franke, Theor. Math. Phys., 120, 1164–1181 (1999).

    Article  MATH  Google Scholar 

  6. S. A. Paston, E. V. Prokhvatilov, and V. A. Franke, Theor. Math. Phys., 131, 516–526 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  7. E. M. Ilgenfriz, S. A. Paston, H. J. Pirner, E. V. Prokhvatilov, and V. A. Franke, Theor. Math. Phys., 148, 948–959 (2006); arXiv:hep-th/0610020v1 (2006).

    Article  Google Scholar 

  8. P. Fonseca and A. Zamolodchikov, J. Statist. Phys., 110, 527–590 (2003); arXiv:hep-th/0112167v1 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Fonseca and A. Zamolodchikov, “Ising spectroscopy I: Mesons at T < T c,” arXiv:hep-th/0612304v1 (2006).

    Google Scholar 

  10. S. S. Chabysheva and J. R. Hiller, “A dynamical model for longitudinal wave functions in light-front holographic QCD,” arXiv:1207.7128v2 [hep-ph] (2012).

    Google Scholar 

  11. S. J. Brodsky and G. F. de Téramond, Phys. Rev. Lett., 96, 201601 (2006); arXiv:hep-ph/0602252v2 (2006).

    Article  ADS  Google Scholar 

  12. S. J. Brodsky and G. F. de Téramond, “AdS/CFT and light-front QCD,” arXiv:0802.0514v1 [hep-ph] (2008).

    Google Scholar 

  13. J. Mondejar and A. Pineda, Phys. Rev. D, 79, 085011 (2009); arXiv:0901.3113v1 [hep-ph] (2009).

    Article  ADS  Google Scholar 

  14. M. Shifman, “Quark-hadron duality,” in: At the Frontier of Particle Physics–Handbook of QCD: Boris Ioffe Festschrift (M. Shifman, ed.), Vol. 3, World Scientific, Singapore (2001), pp. 1577–1670; arXiv:hep-ph/0009131v1 (2000).

    Google Scholar 

  15. H. Lewy, Manuscr. Math., 26, 411–421 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Lewy, Indiana Univ. Math. J., 6, 91–107 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. J. Hanson, R. D. Peccei, and M. K. Prasad, Nucl. Phys. B, 121, 477–504 (1977).

    Article  ADS  Google Scholar 

  18. S. Huang, J. W. Negele, and J. Polonyi, Nucl. Phys. B, 307, 669–704 (1988).

    Article  ADS  Google Scholar 

  19. R. L. Jaffe and P. F. Mende, Nucl. Phys. B, 369, 189–218 (1992).

    Article  ADS  Google Scholar 

  20. W. Krauth and M. Staudacher, Phys. Lett. B, 388, 808–812 (1996); arXiv:hep-th/9608122v1 (1996).

    Article  ADS  Google Scholar 

  21. S. Hildebrandt, Manuscr. Math., 24, 45–79 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Hildebrandt, Ark. Mat., 17, 29–38 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Hildebrandt and V. Visnjić-Triantafillou, Math. Z., 168, 223–240 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Bruning, Manuscr. Math., 39, 125–146 (1982).

    Article  MathSciNet  Google Scholar 

  25. I. Ziyatdinov, Internat. J. Mod. Phys. A, 25, 3899–3910 (2010); arXiv:1003.4304v2 [hep-th] (2010).

    Article  ADS  MATH  Google Scholar 

  26. V. A. Fateev, S. L. Lukyanov, and A. B. Zamolodchikov, J. Phys. A, 42, 304012 (2009); arXiv:0905.2280v2 [hep-th] (2009).

    Article  MathSciNet  Google Scholar 

  27. M. Yu. Malyshev and E. V. Prokhvatilov, Theor. Math. Phys., 169, 1600–1610 (2011).

    Article  Google Scholar 

  28. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C. (1972).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. A. Zubov or S. A. Paston.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 184, No. 3, pp. 449–455, September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubov, R.A., Paston, S.A. & Prokhvatilov, E.V. Exact solution of the’ t Hooft equation in the limit of heavy quarks with unequal masses. Theor Math Phys 184, 1281–1286 (2015). https://doi.org/10.1007/s11232-015-0335-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0335-6

Keywords

Navigation