Skip to main content
Log in

The functional squeeze operator algebra in Maxwell–Chern–Simons electrodynamics

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using annihilation and creation squeeze operators, we construct a basis of Hermitian generators obeying the SU(2) Lie algebra. We discuss the relations between the Maxwell–Chern–Simons electrodynamics vacuum and the normal vacuum and show that the most general Bogoliubov transformation is just a functional rotation in the Fock space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Carroll, G. B. Field, and R. Jackiw, Phys. Rev. D, 41, 1231–1240 (1990).

    Article  ADS  Google Scholar 

  2. A. A. Andrianov and R. Soldati, Phys. Rev. D, 51, 5961–5964 (1995); arXiv:hep-th/9405147v1 (1994).

    Article  ADS  Google Scholar 

  3. D. Colladay and V. A. Kostelecký, Phys. Rev. D, 55, 6760–6774 (1997); arXiv:hep-ph/9703464v1 (1997).

    Article  ADS  Google Scholar 

  4. S. R. Coleman and S. L. Glashow, Phys. Lett. B, 405, 249–252 (1997); arXiv:hep-ph/9703240v3 (1997).

    Article  ADS  Google Scholar 

  5. R. C. Myers and M. Pospelov, Phys. Rev. Lett., 90, 211601 (2003); arXiv:hep-ph/0301124v2 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Montemayor and L. F. Urrutia, Phys. Rev. D, 72, 045018 (2005); arXiv:hep-ph/0505135v2 (2005).

    Article  ADS  Google Scholar 

  7. V. A. Kostelecký and M. Mewes, Phys. Rev. D, 66, 056005 (2002); arXiv:hep-ph/0205211v1 (2002).

    Article  ADS  Google Scholar 

  8. G. M. Shore, Contemp. Phys., 44, 503–521 (2003); arXiv:gr-qc/0304059v1 (2003).

    Article  ADS  Google Scholar 

  9. H.-C. Cheng, M. A. Luty, S. Mukohyama, and J. Thaler, JHEP, 0605, 076 (2006); arXiv:hep-th/0603010v2 (2006).

    Article  ADS  Google Scholar 

  10. A. A. Andrianov, R. Soldati, and L. Sorbo, Phys. Rev. D, 59, 025002 (1999); arXiv:hep-th/9806220v1 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  11. N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama, JHEP, 0405, 074 (2004); arXiv:hep-th/ 0312099v1 (2003).

    Article  MathSciNet  Google Scholar 

  12. L. Abbott and P. Sikivie, Phys. Lett. B, 120, 133–136 (1983).

    Article  ADS  Google Scholar 

  13. M. Kuster, G. Raffelt, and B. Beltrán, Axions: Theory, Cosmology, and Experimental Searches (Lect. Notes Phys., Vol. 741), Springer, Berlin (2008).

    Book  Google Scholar 

  14. E. W. Kolb and M. S. Turner, The Early Universe (Frontiers Phys., Vol. 69), Addison-Wesley, Redwood City, Calif. (1990)

    MATH  Google Scholar 

  15. Y. Sofue and V. Rubin, Ann. Rev. Astron. Astrophys., 39, 137–174 (2001)

    Article  ADS  Google Scholar 

  16. S. J. Asztalos, E. Daw, H. Peng, L. J. Rosenberg, D. B. Yu, C. Hagmann, D. Kinion, W. Stoeffl, K. van Bibber, J. LaVeigne, P. Sikivie, N. S. Sullivan, D. B. Tanner F. Nezrick, and D. M. Moltz, Astrophys. J., 571, L27–L30 (2002).

    Article  ADS  Google Scholar 

  17. K. O. Lapidus and V. M. Emel’yanov, Phys. Part. Nucl., 40, 29–48 (2009).

    Article  Google Scholar 

  18. I. Tserruya, “Electromagnetic Probes,” in: Relativistic Heavy Ion Physics (Elem. Part. Nucl. Atoms., Vol. 23, R. Stock, ed.), Springer, Heidelberg (2010); arXiv:0903.0415v3 [nucl-ex] (2009).

    Google Scholar 

  19. A. A. Andrianov, D. Espriu, P. Giacconi, and R. Soldati, JHEP, 0909, 057 (2009); arXiv:0907.3709v2 [hep-ph] (2009).

    Article  ADS  Google Scholar 

  20. A. A. Andrianov and D. Espriu, Phys. Lett. B, 663, 450–455 (2008); arXiv:0709.0049v4 [hep-ph] (2007)

    Article  ADS  Google Scholar 

  21. A. A. Andrianov, D. Espriu, and V. A. Andrianov, Phys. Lett. B, 678, 416–421 (2009).

    Article  ADS  Google Scholar 

  22. D. Kharzeev, R. D. Pisarski, and M. H. G. Tytgat, Phys. Rev. Lett., 81, 512–515 (1998); arXiv:hep-ph/ 9804221v2 (1998)

    Article  ADS  Google Scholar 

  23. K. Buckley, T. Fugleberg, and A. Zhitnitsky, Phys. Rev. Lett., 84, 4814–4817 (2000); arXiv: hep-ph/9910229v2 (1999)

    Article  ADS  Google Scholar 

  24. D. Kharzeev, Phys. Lett. B, 633, 260–264 (2006); arXiv:hep-ph/0406125v2 (2004)

    Article  ADS  Google Scholar 

  25. D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A, 803, 227–253 (2008); arXiv:0711.0950v1 [hep-ph] (2007).

    Article  ADS  Google Scholar 

  26. P. Buividovich, M. Chernodub, E. Luschevskaya, and M. Polikarpov, Phys. Rev. D, 80, 054503 (2009); arXiv:0907.0494v2 [hep-lat] (2009).

    Article  ADS  Google Scholar 

  27. B. I. Abelev et al. [STAR Collab.], Phys. Rev. Lett., 103, 251601 (2009); arXiv:0909.1739v3 [nucl-ex] (2009)

    Article  ADS  Google Scholar 

  28. S. A. Voloshin, J. Phys. Conf. Ser., 230, 012021 (2010); arXiv:1003.1127v1 [nucl-ex] (2010).

    Article  ADS  Google Scholar 

  29. A. Gorsky and M. B. Voloshin, Phys. Rev. D, 82, 086008 (2010); arXiv:1006.5423v1 [hep-th] (2010).

    Article  ADS  Google Scholar 

  30. J. Alfaro, A. A. Andrianov, M. Cambiaso, P. Giacconi, and R. Soldati, Internat. J. Mod. Phys. A, 25, 3271–3306 (2010)

    Article  ADS  MATH  Google Scholar 

  31. J. Alfaro, A. A. Andrianov, M. Cambiaso, P. Giacconi, and R. Soldati, Phys. Lett. B, 639, 586–590 (2006); arXiv:hep-th/0604164v5 (2006).

    Article  ADS  Google Scholar 

  32. A. A. Andrianov, S. S. Kolevatov, and R. Soldati, JHEP, 1111, 007 (2011); arXiv:1109.3440v3 [hep-ph] (2011).

    Article  ADS  Google Scholar 

  33. A. A. Andrianov, P. Giacconi, and R. Soldati, JHEP, 0202, 030 (2002); arXiv:hep-th/0110279v3 (2001).

    Article  ADS  Google Scholar 

  34. A. A. Andrianov and S. S. Kolevatov, Theor. Math. Phys., 175, 744–754 (2013); arXiv:1212.5723v2 [hep-ph] (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. S. S. Kolevatov and A. A. Andrianov, AIP Conf. Proc., 1606, 243–255 (2014).

    Article  ADS  Google Scholar 

  36. A. A. Andrianov, D. Espriu, and S. S. Kolevatov, “Effects of pseudoscalar condensation on the cooling of neutron stars,” arXiv:1501.03484v3 [hep-ph] (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Andrianov.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 184, No. 3, pp. 367–379, September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianov, A.A., Kolevatov, S.S. & Soldati, R. The functional squeeze operator algebra in Maxwell–Chern–Simons electrodynamics. Theor Math Phys 184, 1213–1223 (2015). https://doi.org/10.1007/s11232-015-0329-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0329-4

Keywords

Navigation