Skip to main content
Log in

Representations of sl(2, ℂ) in category O and master symmetries

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the indecomposable sl(2,ℂ)-modules in the Bernstein-Gelfand-Gelfand category O naturally arise for homogeneous integrable nonlinear evolution systems. We then develop a new approach called the O scheme to construct master symmetries for such integrable systems. This method naturally allows computing the hierarchy of time-dependent symmetries. We finally illustrate the method using both classical and new examples. We compare our approach to the known existing methods used to construct master symmetries. For new integrable equations such as a Benjamin-Ono-type equation, a new integrable Davey-Stewartson-type equation, and two different versions of (2+1)-dimensional generalized Volterra chains, we generate their conserved densities using their master symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Adler, A. B. Shabat, and R. I. Yamilov, Theor. Math. Phys., 125, 1603–1661 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  2. V. V. Sokolov and A. B. Shabat, Sov. Sci. Rev. Sec. C, 4, 221–280 (1984).

    MATH  MathSciNet  Google Scholar 

  3. A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Russ. Math. Surveys, 42, 1–63 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  4. A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov, “The symmetry approach to classification of integrable equations,” in: What is Integrability? (V. E. Zakharov, ed.), Springer, Berlin (1991), pp. 115–184.

    Chapter  Google Scholar 

  5. A. B. Shabat and A. V. Mikhailov, “Symmetries–test of integrability,” in: Important Developments in Soliton Theory (A. S. Fokas and V. E. Zakharov, eds.), Springer, Berlin (1993), pp. 355–374.

    Chapter  Google Scholar 

  6. A. V. Mikhailov, V. S. Novikov, and J. P. Wang, “Symbolic representation and classification of integrable systems,” in: Algebraic Theory of Differential Equations (London Math. Soc. Lect. Note Ser., Vol. 357, M. A. H. MacCallum and A. V. Mikhailov, eds.), Cambridge Univ. Press, Cambridge (2009), pp. 156–216.

    Google Scholar 

  7. J. A. Sanders and J. P. Wang, “Number theory and the symmetry classification of integrable systems,” in: Integrability (Lect. Notes. Phys., Vol. 767, A. V. Mikhailov, ed.), Springer, Berlin (2009), pp. 89–118.

    Chapter  Google Scholar 

  8. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. Appl. Math., 53, 249–315 (1974).

    MATH  MathSciNet  Google Scholar 

  9. P. J. Olver, J. Math. Phys., 18, 1212–1215 (1977).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. B. Fuchssteiner, Nonlinear Anal., 3, 849–862 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  11. F. Magri, “A geometrical approach to the nonlinear solvable equations,” in: Nonlinear Evolution Equations and Dynamical Systems (Lect. Notes Phys., Vol. 120, M. Boiti, F. Pempinelli, and G. Soliani, eds.), Springer, Berlin (1980), pp. 233–263.

    Chapter  Google Scholar 

  12. A. S. Fokas and B. Fuchssteiner, Phys. Lett. A, 86, 341–345 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  13. H. H. Chen, Y. C. Lee, and J.-E. Lin, Phys. D, 9, 439–445 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  14. I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester (1993).

    Google Scholar 

  15. A. Yu. Orlov and E. I. Schulman, Lett. Math. Phys., 12, 171–179 (1986).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. W.-X. Ma, J. Math. Phys., 33, 2464–2476 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. B. Fuchssteiner, Progr. Theoret. Phys., 70, 1508–1522 (1983).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. W. Oevel, B. Fuchssteiner, H. Zhang, and O. Ragnisco, J. Math. Phys., 30, 2664–2670 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. J. A. Sanders and J. P. Wang, “On integrability of evolution equations and representation theory,” in: The Geometrical Study of Differential Equations (Contemp. Math., Vol. 285, J. A. Leslie, T. P. Robar, eds.), Amer. Math. Soc., Providence, R. I. (2001), pp. 85–99.

    Chapter  Google Scholar 

  20. F. Finkel and A. S. Fokas, Phys. Lett. A, 293, 36–44 (2002); arXiv:nlin/0112002v1 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. B. Huard and V. S. Novikov, J. Phys. A: Math. Theor., 46, 275202 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  22. E. V. Ferapontov, V. S. Novikov, and I. Roustemoglou, J. Phys. A: Math. Theor., 46, 245207 (2013); arXiv: 1303.3430v1 [nlin.SI] (2013).

    Article  MathSciNet  ADS  Google Scholar 

  23. J. Troost, J. Phys. A: Math. Theor., 45, 415202 (2012).

    Article  MathSciNet  Google Scholar 

  24. J. E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O (Grad. Stud. Math., Vol. 94), Amer. Math. Soc., Providence, R. I. (2008).

    Book  MATH  Google Scholar 

  25. V. Mazorchuk, Lectures on sl2(C)-Modules, Imperial College Press, London (2010).

    Google Scholar 

  26. B. Fuchssteiner, S. Ivanov, and W. Wiwianka, Math. Comput. Modelling, 25, No. 8–9, 91–100 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  27. J. A. Sanders and J. P. Wang, J. Differ. Equ., 147, 410–434 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. F. Beukers, J. A. Sanders, and J. P. Wang, J. Differ. Equ., 146, 251–260 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. J. A. Sanders, and J. P. Wang, Phys. D, 149, 1–10 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Sergyeyev and J. A. Sanders, J. Nonlinear Math. Phys., 10, 78–85 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. B. Fuchssteiner, Phys. D, 13, 387–394 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  32. A. Ya. Maltsev and S. P. Novikov, Phys. D, 156, 53–80 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  33. D. K. Demskoi and V. V. Sokolov, Nonlinearity, 21, 1253–1264 (2008); arXiv:nlin/0607071v1 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. A. V. Mikhailov and V. S. Novikov, Moscow Math. J., 3, 1293–1305 (2003).

    MATH  MathSciNet  Google Scholar 

  35. A. V. Mikhailov and R. I. Yamilov, J. Phys. A: Math. Gen., 31, 6707–6715 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. J. P. Wang, J. Math. Phys., 47, 113508 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  37. P. J. Olver, J. A. Sanders, and J. P. Wang, J. Nonlinear Math. Phys., 9 (Suppl. 1), 164–172 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  38. P. J. Olver, “Nonlocal symmetries and ghosts,” in: New Trends in Integrability and Partial Solvability (NATO Sci. Ser. II: Math. Phys. Chem., Vol. 132, A. B. Shabat, A. González-López, M. Mañas, L. Martínez Alonso, and M. A. Rodríguez, eds.), Kluwer, Dordrecht (2004), pp. 199–215.

    Chapter  Google Scholar 

  39. H. H. Chen and J. E. Lin, Phys. D, 26, 171–180 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  40. W. Oevel and B. Fuchssteiner, Phys. Lett. A, 88, 323–327 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  41. W. Fu, L. Huang, K. M. Tamizhmani, and D.-J. Zhang, Nonlinearity, 26, 3197–3229 (2013); arXiv:1211.3585v2 [nlin.SI] (2012).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. I. Y. Dorfman and A. S. Fokas, J. Math. Phys., 33, 2504–2514 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. P. J. Olver and V. V. Sokolov, Commun. Math. Phys., 193, 245–268 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. P. J. Olver and J. P. Wang, Proc. London Math. Soc. (3), 81, 566–586 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  45. E. Date, M. Jimbo, and T. Miwa, J. Phys. Soc. Japan, 51, 4116–4124 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  46. F. Khanizadeh, J. Phys. A: Math. Theor., 47, 405205 (2014).

    Article  MathSciNet  Google Scholar 

  47. A. V. Mikhailov, JETP Lett., 30, 414–418 (1979).

    ADS  Google Scholar 

  48. A. V. Mikhailov, JETP Lett., 32, 187–192 (1980).

    Google Scholar 

  49. A. V. Mikhailov, Phys. D, 3, 73–117 (1981).

    Article  MATH  Google Scholar 

  50. S. Lombardo and A. V. Mikhailov, J. Phys. A: Math. Gen., 37, 7727–7742 (2004); arXiv:nlin/0404013v1 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. J. P. Wang, J. Math. Phys., 50, 023506 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  52. A. V. Mikhailov, G. Papamikos, and J. P. Wang, J. Math. Phys., 55, 113507 (2014); arXiv:1402.5660v1 [nlin.SI] (2014).

    Article  MathSciNet  ADS  Google Scholar 

  53. A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Commun. Math. Phys., 115, 1–19 (1988).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Wang.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 184, No. 2, pp. 212–243, August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.P. Representations of sl(2, ℂ) in category O and master symmetries. Theor Math Phys 184, 1078–1105 (2015). https://doi.org/10.1007/s11232-015-0319-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0319-6

Keywords

Navigation