Skip to main content
Log in

Casimir effect for a collection of parallel conducting surfaces

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Casimir energy for a system of conducting parallel planes with constant surface conductance and obtain a general expression for the Casimir energy of the systems of two, three, and four planes. For equal separations between the planes, the energy is inversely proportional to the cubed distance between the planes and for low conductance is independent of the Planck constant and the speed of light. For a system of ideally conducting planes, the Casimir energy is the sum of the Casimir energies of pairs of adjacent planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. B. G. Casimir, Proc. K. Ned. Akad. Wetensc., 51, 793–795 (1948).

    MATH  Google Scholar 

  2. M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys. Rep., 353, 1–205 (2001); arXiv:quant-ph/0106045v1 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. K. A. Milton, J. Phys. A: Math. Gen., 37, R209-R277 (2004).

  4. S. Y. Buhmann and D.-G. Welsch, Prog. Quantum Electron., 31, 51–130 (2007).

    Article  ADS  Google Scholar 

  5. G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Rev. Modern Phys., 81, 1827–1885 (2009).

    Article  ADS  Google Scholar 

  6. K. A. Milton, Casimir Effect: Physical Manifestation of Zero-Point Energy, World Scientific, Singapore (2001).

    Book  Google Scholar 

  7. M. Bordag, G. Klimchitskaya, U. Mohideen, and V. Mostepanenko, Advances in the Casimir Effect (Intl. Ser. Monogr. Phys., Vol. 145), Oxford Univ. Press, Oxford (2009).

    Book  MATH  Google Scholar 

  8. E. M. Lifshitz, Sov. Phys. JETP, 2, 73–83 (1956).

    MathSciNet  Google Scholar 

  9. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Sov. Phys. Usp., 4, 153–176 (1961).

    Article  ADS  Google Scholar 

  10. Yu. S. Barash and V. L. Ginzburg, Sov. Phys. Usp., 18, 305–322 (1975).

    Article  ADS  Google Scholar 

  11. J. S. Dowker and R. Critchley, Phys. Rev. D, 13, 3224–3232 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  12. S. W. Hawking, Commun. Math. Phys., 55, 133–148 (1977).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. S. K. Blau, M. Visser, and A. Wipf, Nucl. Phys. B, 310, 163–180 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  14. E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, and S. Zerbini, Zeta Regularization Techniques with Applications, World Scientific, Singapore (1994).

    Book  MATH  Google Scholar 

  15. M. Bordag, E. Elizalde, K. Kirsten, and S. Leseduarte, Phys. Rev. D, 56, 4896–4904 (1997); arXiv:hep-th/9608071v1 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  16. Yu. S. Barash and V. L. Ginzburg, Sov. Phys. Usp., 27, 467–491 (1984).

    Article  ADS  Google Scholar 

  17. V. V. Nesterenko and I. G. Pirozhenko, Phys. Rev. A, 86, 052503 (2012).

    Article  ADS  Google Scholar 

  18. N. R. Khusnutdinov and A. R. Khabibullin, Theor. Math. Phys., 166, 66–80 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Bordag and N. R. Khusnutdinov, Phys. Rev. D, 77, 085026 (2008); arXiv:0801.2062v1 [hep-th] (2008).

    Article  ADS  Google Scholar 

  20. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666–669 (2004); arXiv:cond-mat/0410550v1 (2004).

    Article  ADS  Google Scholar 

  21. L. A. Falkovsky and A. A. Varlamov, Eur. Phys J. B, 56, 281–284 (2007).

    Article  ADS  Google Scholar 

  22. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, Phys. Rev. Lett., 100, 117401 (2008).

    Article  ADS  Google Scholar 

  23. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A.K. Geim, Science, 320, 1308–1308 (2008).

    Article  ADS  Google Scholar 

  24. I. V. Fialkovsky, V. N. Marachevsky, and D. V. Vassilevich, Phys. Rev. B, 84, 035446 (2011); arXiv:1102.1757v2 [hep-th] (2011).

    Article  ADS  Google Scholar 

  25. V. N. Marachevsky, J. Phys. A: Math. Theor., 45, 374021 (2012).

    Article  MathSciNet  Google Scholar 

  26. V. N. Marachevsky, Internat. J. Mod. Phys., 14, 435–444 (2012); arXiv:1111.3612v1 [hep-th] (2011).

    Google Scholar 

  27. D. Drosdoff and L. M. Woods, Phys. Rev. B, 82, 155459 (2010).

    Article  ADS  Google Scholar 

  28. N. Khusnutdinov, D. Drosdoff, and L. M. Woods, Phys. Rev. D, 89, 085033 (2014); arXiv:1404.2532v1 [quantph] (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Khusnutdinov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 183, No. 1, pp. 51–61, April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusnutdinov, N.R., Kashapov, R.N. Casimir effect for a collection of parallel conducting surfaces. Theor Math Phys 183, 491–500 (2015). https://doi.org/10.1007/s11232-015-0276-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0276-0

Keywords

Navigation