Skip to main content
Log in

Self-consistent approach to the description of relaxation processes in classical multiparticle systems

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The concept of time correlation functions is a very convenient theoretical tool in describing relaxation processes in multiparticle systems because, on one hand, correlation functions are directly related to experimentally measured quantities (for example, intensities in spectroscopic studies and kinetic coefficients via the Kubo-Green relation) and, on the other hand, the concept is also applicable beyond the equilibrium case. We show that the formalism of memory functions and the method of recurrence relations allow formulating a self-consistent approach for describing relaxation processes in classical multiparticle systems without needing a priori approximations of time correlation functions by model dependences and with the satisfaction of sum rules and other physical conditions guaranteed. We also demonstrate that the approach can be used to treat the simplest relaxation scenarios and to develop microscopic theories of transport phenomena in liquids, the propagation of density fluctuations in equilibrium simple liquids, and structure relaxation in supercooled liquids. This approach generalizes the mode-coupling approximation in the Götze-Leutheusser realization and the Yulmetyev-Shurygin correlation approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Zubarev, Sov. Phys. Usp., 3, 320–345 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  2. D. N. Zubarev and Yu. G. Rudoi, Phys. Usp., 36, 188–191 (1993).

    Article  ADS  Google Scholar 

  3. N. N. Bogolyubov and S. V. Tjablikov, Sov. Phys. Dokl., 4, 589–593 (1959).

    ADS  MATH  Google Scholar 

  4. Yu. Tserkovnikov, Sov. Phys. Dokl., 7, 322–325 (1962).

    ADS  MATH  Google Scholar 

  5. Yu. A. Tserkovnikov, Theor. Math. Phys., 49, 993–1002 (1981).

    Article  MathSciNet  Google Scholar 

  6. Yu. G. Rudoi and Yu. A. Tserkovnikov, Theor. Math. Phys., 14, 75–89 (1973).

    Article  Google Scholar 

  7. A. A. Vladimirov, D. Ihle, and N. M. Plakida, Theor. Math. Phys., 145, 1576–1589 (2005).

    Article  MATH  Google Scholar 

  8. Yu. A. Tserkovnikov, Theor. Math. Phys., 154, 165–174 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  9. N. M. Plakida, Theor. Math. Phys., 5, 1047–1052 (1970).

    Article  Google Scholar 

  10. H. B. Callen and I. A. Welton, Phys. Rev., 83, 34–40 (1951).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford Univ. Press, Oxford (2004).

    Google Scholar 

  12. D. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes, Vol. 2, Relaxation and Hydrodynamic Processes, Akademie Verlag, Berlin (1997).

    MATH  Google Scholar 

  13. R. Kubo, J. Phys. Soc. Japan, 12, 570–586 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  14. U. Balucani, M. H. Lee, and V. Tognetti, Phys. Rep., 373, 409–492 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. I. K. Kamilov, A. K. Murtazaev, and Kh. K. Aliev, Phys. Usp., 42, 689–709 (1999).

    Article  ADS  Google Scholar 

  16. I. M. Lifshitz, S. A. Gredescul, and L. A. Pastur, Introduction to the Theory of Disordered Systems [in Russian], Nauka, Moscow (1982); English transl., Wiley, New York (1988).

    Google Scholar 

  17. B. A. Klumov, Phys. Usp., 53, 1053–1065 (2010).

    Article  ADS  Google Scholar 

  18. B. J. Berne and G. D. Harp, “On the calculation of time correlation functions,” in: Advances in Chemical Physics (I. Prigogine and S. A. Rice, eds.), Vol. 17, Wiley, New York (1970), pp. 63–227.

    Chapter  Google Scholar 

  19. J. R. D. Copley, and S. W. Lovesey, Rep. Prog. Phys., 38, 461–563 (1975).

    Article  ADS  Google Scholar 

  20. K. Tankeshwar, G. S. Dubey, and K. Pathak, J. Phys. C, 21, L811–L814 (1988).

    Article  ADS  Google Scholar 

  21. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Acad. Press, London (2006).

    Google Scholar 

  22. I. M. de Schepper, E. G. D. Cohen, C. Bruin, J. C. van Rijs, W. Montfrooij, and L. A. de Graaf, Phys. Rev. A, 38, 271–287 (1988).

    Article  ADS  Google Scholar 

  23. A. I. Olemskoi and I. V. Koplyk, Phys. Usp., 38, 1061–1097 (1995).

    Article  ADS  Google Scholar 

  24. A. I. Olemskoi, Phys. Usp., 39, 651–668 (1996).

    Article  ADS  Google Scholar 

  25. M. H. Lee, Phys. Rev. Lett., 49, 1072–1075 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  26. M. H. Lee, Phys. Rev. E, 62, 1769–1772 (2000).

    Article  ADS  Google Scholar 

  27. M. H. Lee, Phys. Rev. B, 26, 2547–2551 (1983).

    Article  ADS  Google Scholar 

  28. M. H. Lee, J. Hong, and J. Florencio Jr., Phys. Scr., T19B, 498–504 (1987).

    Article  ADS  Google Scholar 

  29. E. Leutheusser, Phys. Rev. A, 29, 2765–2773 (1984).

    Article  ADS  Google Scholar 

  30. W. Gotze and L. Sjogren, Rep. Prog. Phys., 55, 241–376 (1992).

    Article  ADS  Google Scholar 

  31. V. Yu. Shurygin and R. M. Yul’met’yev, Theor. Math. Phys., 83, 492–502 (1990).

    Article  Google Scholar 

  32. R. M. Yul’met’yev, Acta Phys. Polon. A, 58, 801–810 (1980).

    Google Scholar 

  33. R. M. Yul’met’yev, Acta Phys. Polon. A, 65, 33–38 (1984).

    Google Scholar 

  34. R. M. Yul’met’yev, Theor. Math. Phys., 30, 169–180 (1977).

    Article  Google Scholar 

  35. Yu. K. Tovbin, Molecular Theory of Adsorption in Porous Bodies [in Russian], Fizmatlit, Moscow (2012).

    Google Scholar 

  36. V. N. Ryzhov, A. F. Barabanov, M. V. Magnitskaya, and E. E. Tareeva, Phys. Usp., 51, 1077–1083 (2008).

    Article  ADS  Google Scholar 

  37. V. V. Brazhkin, Yu. D. Fomin, A. G. Lyapin, V. N. Ryzhov, and K. Trachenko, Phys. Rev. E., 85, 031203 (2012).

    Article  ADS  Google Scholar 

  38. V. V. Brazhkin, Yu. D. Fomin, A. G. Lyapin, V. N. Ryzhov, E. N. Tsiok, and K. Trachenko, Phys. Rev. Lett., 111, 145901 (2013).

    Article  ADS  Google Scholar 

  39. J. Frenkel, Kinetic Theory of Liquids, Clarendon, Oxford (1946).

    MATH  Google Scholar 

  40. N. H. March, Liquid Metals: Concepts and Theory, Cambridge Univ. Press, Cambridge (1990).

    Book  Google Scholar 

  41. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B, 28, 784–805 (1983).

    Article  ADS  Google Scholar 

  42. R. S. Berry and B. M. Smirnov, Phys. Usp., 52, 137–164 (2009).

    Article  ADS  Google Scholar 

  43. M. Reed and B. Simon, Methods of Modern Mathetical Physics, Vol. 1, Functional Analysis, Acad. Press, New York (1978).

    Google Scholar 

  44. R. Zwanzig, Phys. Rev., 124, 983–992 (1961).

    Article  ADS  MATH  Google Scholar 

  45. H. Mori, Prog. Theoret. Phys., 33, 423–455 (1965); 34, 399–416 (1965).

    Article  ADS  MATH  Google Scholar 

  46. A. V. Mokshin, R. M. Yulmetyev, and P. Hänggi, Phys. Rev. Lett., 95, 200601–200601 (2005); arXiv:cond-mat/0511308v1 (2005).

    Article  ADS  Google Scholar 

  47. A. V. Mokshin and R. M. Yulmetyev, Microscopic Dynamics of Simple Liquids [in Russian], Tsentr Innovatsionnykh Tekhnologii, Kazan (2006).

    Google Scholar 

  48. N. N. Bogoliubov, Problems of Dynamical Theory in Statistical Physics [in Russian], Gostekhizdat, Moscow (1946).

    Google Scholar 

  49. N. N. Bogoliubov, ed., Statistical Physics and Quantum Field Theory [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  50. U. Balucani and M. Zoppi, Dynamics of the Liquid State, Clarendon, Oxford (1994).

    Google Scholar 

  51. H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, eds., Physics of Simple Liquids, North-Holland, Amsterdam (1969).

    Google Scholar 

  52. A. V. Mokshin, R. M. Yulmetyev, and P. Hänggi, New J. Phys., 7, 9 (2005).

    Article  Google Scholar 

  53. R. R. Nigmatullin, Phys. A, 363, 282–298 (2006).

    Article  Google Scholar 

  54. R. R. Nigmatullin, Phys. A, 285, 547–565 (2000).

    Article  MATH  Google Scholar 

  55. A. Wierling, Europ. Phys. J. B, 85, 20 (2012).

    Article  ADS  Google Scholar 

  56. A. Wierling and I. Sawada, Contrib. Plasma Phys., 52, 49–52 (2012).

    Article  ADS  Google Scholar 

  57. V. N. Ryzhov, E. E. Tareeva, T. I. Shchelkacheva, and N. M. Shchelkachev, Theor. Math. Phys., 141, 1443–1451 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  58. R. E. Ryltsev, N. M. Chtchelkatchev, and V. N. Ryzhov, Phys. Rev. E, 110, 025701 (2013); arXiv:1301.2162v1 [cond-mat.soft] (2013).

    ADS  Google Scholar 

  59. K. Kawasaki, Ann. Phys., 61, 1–56 (1970).

    Article  ADS  Google Scholar 

  60. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinov, and P. Hänggi, Phys. Solid State, 48, 1760–1763 (2006).

    Article  ADS  Google Scholar 

  61. A. V. Mokshin, A. V. Chvanova, and R. M. Khusnutdinov, Theor. Math. Phys., 171, 541–552 (2012).

    Article  MATH  Google Scholar 

  62. J. Florencio Jr. and M. H. Lee, Phys. Rev. A, 31, 3231–3236 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  63. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Natl. Bur. Stds. Appl. Math. Ser., Vol. 55), Dover, New York (1972).

    MATH  Google Scholar 

  64. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinov, and P. Hanggi, JETP, 103, 841–849 (2006).

    Article  ADS  Google Scholar 

  65. A. V. Mokshin, Discontin. Nonlinearity Complex., 2, 43–56 (2013).

    Article  MATH  Google Scholar 

  66. R. J. Rubin, Phys. Rev., 131, 964–989 (1963).

    Article  ADS  Google Scholar 

  67. D. J. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Cambridge Univ. Press, New York (2008).

    Book  MATH  Google Scholar 

  68. A. V. Mokshin, S. O. Zabegaev, and R. M. Khusnutdinoff, Phys. Solid State, 53, 570–576 (2011).

    Article  ADS  Google Scholar 

  69. R. Bansal and K. N. Pathak, Phys. Rev. A, 9, 2773–2782 (1974).

    Article  ADS  Google Scholar 

  70. N. M. Blagoveshchenskii, A. G. Novikov, and V. V. Savostin, Crystallography Reports, 56, 1096–1099 (2011).

    Article  ADS  Google Scholar 

  71. N. M. Blagoveshchenskii and A. G. Novikov, Phys. B, 406, 1749–1751 (2011).

    Article  ADS  Google Scholar 

  72. N. M. Blagoveshchenskii, A. G. Novikov, and V. V. Savostin, Phys. B, 407, 4567–4569 (2012).

    Article  ADS  Google Scholar 

  73. R. M. Yulmetyev, A. V. Mokshin, P. Hänggi, and V. Yu. Shurygin, Phys. Rev. E, 64, 057101 (2001); arXiv:condmat/0111467v1 (2001).

    Article  ADS  Google Scholar 

  74. R. M. Yulmetyev, A. V. Mokshin, T. Scopigno, and P. Hänggi, J. Phys.: Condens. Matter, 15, 2235–2257 (2003).

    ADS  Google Scholar 

  75. R. M. Yul’met’yev, A. V. Mokshin, P. Hänggi, and V. Yu. Shurygin, JETP Lett., 76, 147–150 (2002).

    Article  ADS  Google Scholar 

  76. R. M. Yulmetyev, A. V. Mokshin, and P. Hänggi, Phys. Rev. E, 68, 051201–051201 (2003); arXiv:cond-mat/0401314v2 (2004).

    Article  ADS  Google Scholar 

  77. A. V. Mokshin, R. M. Yulmetyev, and P. Hänggi, J. Chem. Phys., 121, 7341–7346 (2004); arXiv:cond-mat/0506636v1 (2005).

    Article  ADS  Google Scholar 

  78. E. Michler, H. Hahn, and P. Schofield, J. Phys. F: Metal Phys., 7, 869–875 (1977).

    Article  ADS  Google Scholar 

  79. Yu. M. Gufan and I. N. Moshchenko, Phys. Solid State, 33, 1166–1172 (1991).

    Google Scholar 

  80. I. A. Osipenko, O. V. Kukin, A. Yu. Gufan, and Yu. M. Gufan, Phys. Solid State, 55, 2405–2412 (2013).

    Article  ADS  Google Scholar 

  81. T. Scopigno, G. Ruocco, and F. Sette, Rev. Modern Phys., 77, 881–933 (2005); arXiv:cond-mat/0503677v1 (2005).

    Article  ADS  Google Scholar 

  82. B. B. Markiv, I. P. Omelyan, and M. V. Tokarchuk, Theor. Math. Phys., 154, 75–84 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  83. J.-F. Wax and T. Bryk, J. Phys.: Condens. Matter, 25, 325104 (2013).

    Google Scholar 

  84. R. M. Khusnutdinov, A. V. Mokshin, and R. M. Yul’met’ev, JETP, 108, 417–427 (2009).

    Article  ADS  Google Scholar 

  85. R. M. Khusnutdinoff and A. V. Mokshin, Bull. Russ. Acad. Sci., 74, 640–643 (2010).

    Article  MATH  Google Scholar 

  86. R. M. Khusnutdinoff, A. V. Mokshin, and I. I. Khadeev, J. Phys.: Conf. Ser., 394, 012012 (2012).

    ADS  Google Scholar 

  87. R. M. Khusnutdinoff, A. V. Mokshin, and I. I. Khadeev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 8, 94–92 (2014).

    Article  Google Scholar 

  88. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinoff, and P. Hänggi, J. Phys.: Condens. Matter, 19, 046209 (2007).

    ADS  Google Scholar 

  89. R. D. Mountain, Rev. Modern Phys., 38, 205–214 (1966).

    Article  ADS  Google Scholar 

  90. L. D. Landau and E. M. Lishits, Electrodynamics of Solid Matter [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  91. G. S. Landsberg, Optics [in Russian], Fizmatlit, Moscow (2003).

    Google Scholar 

  92. I. L. Fabelinskii, Phys. Usp., 43, 89–103 (2000).

    Article  ADS  Google Scholar 

  93. W. Götze, “Aspects of structural glass transitions,” in: Liquids, Freezing, and the Glass Transition (J. P. Hansen, D. Levesque, and J. Zinn-Justen, eds.), Elsevier, New York (1991), pp. 287–504.

    Google Scholar 

  94. W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory, Oxford Univer. Press, Oxford (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mokshin.

Additional information

[This paper is written at the request of the Editorial Board.]

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 183, No. 1, pp. 3–35, April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokshin, A.V. Self-consistent approach to the description of relaxation processes in classical multiparticle systems. Theor Math Phys 183, 449–477 (2015). https://doi.org/10.1007/s11232-015-0274-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0274-2

Keywords

Navigation