Skip to main content
Log in

Tensor gluons and proton structure

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We recently considered a possibility that inside a proton and, more generally, inside hadrons there could be additional partons, tensor gluons, which carry a part of the proton momentum. Tensor gluons have zero electric charge, like gluons, but have a larger spin, and we therefore call them tensor gluons. A nonzero density of tensor gluons can be generated by the emission of tensor gluons by gluons. Tensor gluons can further split into pairs of tensor gluons through different channels. To describe all these processes, we must know the general splitting probabilities for tensor gluons. These probabilities should satisfy very general symmetry relations, which we can resolve by introducing a splitting index. This approach allows finding the general form of the splitting functions, deriving the corresponding DGLAP evolution equations, and calculating the one-loop Callan-Symanzik beta function for tensor gluons of a given spin. Our results provide a nontrivial consistency check of the theory and of the Callan-Symanzik beta function calculations because the theory has a unique coupling constant and its high-energy behavior should be universal for all particles of the spectrum. We argue that the contribution of all spins to the beta function vanishes, leading to a conformal invariant theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Savvidy, Phys. Lett. B, 732, 150–155 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  2. G. Savvidy, Phys. Lett. B, 625, 341–350 (2005); arXiv:hep-th/0509049v2 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. G. Savvidy, Internat. J. Mod. Phys. A, 21, 4931–4957 (2006); arXiv:hep-th/0505033v2 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. G. Savvidy, Internat. J. Mod. Phys. A, 21, 4959–4977 (2006); arXiv:hep-th/0510258v3 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. G. Savvidy, Internat. J. Mod. Phys. A, 25, 5765–5785 (2010); arXiv:1006.3005v1 [hep-th] (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. G. Georgiou and G. Savvidy, Internat. J. Mod. Phys. A, 26, 2537–2555 (2011); arXiv:1007.3756v3 [hep-th] (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. I. Antoniadis and G. Savvidy, Modern Phys. Lett. A, 27, 1250103 (2012); arXiv:1107.4997v2 [hep-th] (2011).

    Article  ADS  MathSciNet  Google Scholar 

  8. G. Altarelli and G. Parisi, Nucl. Phys. B, 126, 298–318 (1977).

    Article  ADS  Google Scholar 

  9. Yu. L. Dokshitzer, Sov. Phys. JETP, 46, 641–653 (1977).

    ADS  Google Scholar 

  10. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys., 15, 438–450 (1972).

    Google Scholar 

  11. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys., 15, 675–684 (1972).

    Google Scholar 

  12. L. N. Lipatov, Sov. J. Nucl. Phys., 20, 94–102 (1975).

    Google Scholar 

  13. D. J. Gross and F. Wilczek, Phys. Rev. D, 8, 3633–3652 (1973).

    Article  ADS  Google Scholar 

  14. D. J. Gross and F. Wilczek, Phys. Rev. D, 9, 980–993 (1974).

    Article  ADS  Google Scholar 

  15. H. D. Politzer, Phys. Rev. Lett., 30, 1346–1349 (1973).

    Article  ADS  Google Scholar 

  16. H. Georgi and S. L. Glashow, Phys. Rev. Lett., 32, 438–441 (1974).

    Article  ADS  Google Scholar 

  17. H. Georgi, H. R. Quinn, and S. Weinberg, Phys. Rev. Lett., 33, 451–454 (1974).

    Article  ADS  Google Scholar 

  18. L. J. Dixon, “Calculating scattering amplitudes efficiently,” arXiv:hep-ph/9601359v2 (1996).

    Google Scholar 

  19. S. J. Parke and T. R. Taylor, Phys. Rev. Lett., 56, 2459–2460 (1986).

    Article  ADS  Google Scholar 

  20. E. Witten, Commun. Math. Phys., 252, 189–258 (2004); arXiv:hep-th/0312171v2 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. R. Britto, F. Cachazo, B. Feng, and E. Witten, Phys. Rev. Lett., 94, 181602 (2005); arXiv:hep-th/0501052v2 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Benincasa and F. Cachazo, “Consistency conditions on the S-matrix of massless particles,” arXiv:0705.4305v2 [hep-th] (2007).

    Google Scholar 

  23. F. Cachazo, P. Svrcek, and E. Witten, JHEP, 0409, 006 (2004); arXiv:hep-th/0403047v2 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  24. N. Arkani-Hamed, and J. Kaplan, JHEP, 0804, 076 (2008); arXiv:0801.2385v1 [hep-th] (2008).

    Article  MathSciNet  Google Scholar 

  25. F. A. Berends and W. T. Giele, Nucl. Phys. B, 313, 595–633 (1989).

    Article  ADS  Google Scholar 

  26. M. L. Mangano and S. J. Parke, Nucl. Phys. B, 299, 673–692 (1988).

    Article  ADS  Google Scholar 

  27. V. S. Fadin, E. A. Kuraev, and L. N. Lipatov, Phys. Lett. B, 60, 50–52 (1975).

    Article  ADS  Google Scholar 

  28. É. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP, 45, 199–204 (1977).

    ADS  MathSciNet  Google Scholar 

  29. I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys., 28, 822–829 (1978).

    Google Scholar 

  30. G. K. Savvidy, Phys. Lett. B, 71, 133–134 (1977).

    Article  ADS  Google Scholar 

  31. S. G. Matinyan and G. K. Savvidy, Nucl. Phys. B, 134, 539–545 (1978).

    Article  ADS  Google Scholar 

  32. I. A. Batalin, S. G. Matinyan, and G. K. Savvidy, Sov. J. Nucl. Phys., 26, 214–217 (1977).

    Google Scholar 

  33. D. Kay, Phys. Rev. D, 28, 1562–1565 (1983).

    Article  ADS  Google Scholar 

  34. L. Brink and H. B. Nielsen, Phys. Lett. B, 43, 319–322 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Savvidy.

Additional information

Dedicated to Professor Andrei Slavnov on the occasion of his 75th birthday

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 182, No. 1, pp. 140–157, January, 2014. Original article submitted June 20, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savvidy, G. Tensor gluons and proton structure. Theor Math Phys 182, 114–129 (2015). https://doi.org/10.1007/s11232-015-0250-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0250-x

Keywords

Navigation