Skip to main content
Log in

Star products on symplectic vector spaces: convergence, representations, and extensions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We briefly survey the general scheme of deformation quantization on symplectic vector spaces and analyze its functional analytic aspects. We treat different star products in a unified way by systematically using an appropriate space of analytic test functions for which the series expansions of the star products in powers of the deformation parameter converge absolutely. The star products are extendable by continuity to larger functional classes. The uniqueness of the extension is guaranteed by suitable density theorems. We show that the maximal star product algebra with the absolute convergence property, consisting of entire functions of an order at most 2 and minimal type, is nuclear. We obtain an integral representation for the star product corresponding to the Cahill-Glauber s-ordering, which connects the normal, symmetric, and antinormal orderings continuously as s varies from 1 to −1. We exactly characterize those extensions of the Wick and anti-Wick correspondences that are in line with the known extension of the Weyl correspondence to tempered distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Dito and D. Sternheimer, “Deformation quantization: Genesis, developments, and metamorphoses,” in: Deformation Quantization (IRMA Lect. Math. Theor. Phys., Vol. 1, G. Halbout, ed.), De Gruyter, Berlin (2002), pp. 9–54; arXiv:math/0201168v1 (2002).

    Google Scholar 

  2. S. T. Ali and M. Engliš, Rev. Math. Phys., 17, 391–490 (2005); arXiv:math-ph/0405065v1 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Todorov, Bulg. J. Phys., 39, 107–149 (2012); arXiv:1206.3116v1 [math-ph] (2012).

    MathSciNet  Google Scholar 

  4. C. K. Zachos, D. B. Fairlie, and T. L. Curtright, eds., Quantum Mechanics in Phase Space (World Sci. Ser. 20th Cen. Phys., Vol. 34), World Scientific, Singapore (2005).

    MATH  Google Scholar 

  5. R. J. Szabo, Phys. Rep., 378, 207–299 (2003); arXiv:hep-th/0109162v4 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. L. Álvarez-Gaumé and M. A. Vázquez-Mozo, Nucl. Phys. B, 668, 293–321 (2003); arXiv:hep-th/0305093v2 (2003).

    Article  ADS  MATH  Google Scholar 

  7. N. N. Bogolubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory [in Russian], Nauka, Moscow (1987); English transl. (Math. Phys. Appl. Math., Vol. 10), Kluwer Academic, Dordrecht (1990).

    Google Scholar 

  8. S. Galluccio, F. Lizzi, and P. Vitale, Phys. Rev. D, 78, 085007 (2008); arXiv:0810.2095v1 [hep-th] (2008).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. P. Balachandran, A. Ibort, G. Marmo, and M. Martone, Phys. Rev. D, 81, 085017 (2010); arXiv:0910.4779v3 [hep-th] (2009).

    Article  ADS  Google Scholar 

  10. P. Basu, B. Chakraborty, and F. G. Scholtz, J. Phys. A, 44, 285204 (2011); arXiv:1101.2495v1 [hep-th] (2011).

    Article  MathSciNet  Google Scholar 

  11. M. A. Soloviev, J. Phys. A, 40, 14593–14604 (2007); arXiv:0708.1151v2 [hep-th] (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. M. A. Soloviev, Theor. Math. Phys., 163, 741–752 (2010); arXiv:1012.3536v1 [hep-th] (2010).

    Article  MATH  Google Scholar 

  13. M. A. Soloviev, Phys. Rev. D, 89, 105020 (2014); arXiv:1312.5656v1 [math-ph] (2013).

    Article  ADS  Google Scholar 

  14. H. Grosse and G. Lechner, JHEP, 0711, 012 (2007); arXiv:0706.3992v2 [hep-th] (2007).

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Grosse and G. Lechner, JHEP, 0809, 131 (2008); arXiv:0808.3459v1 [math-ph] (2008).

    Article  ADS  MathSciNet  Google Scholar 

  16. J. M. Gracia-Bondia and J. C. Várilly, J. Math. Phys., 29, 869–879 (1988).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. J. M. Gracia-Bondia, F. Lizzi, G. Marmo, and P. Vitale, JHEP, 0204, 026 (2002); arXiv:hep-th/0112092v2 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  18. V. Gayral, J. M. Gracia-Bondia, B. Iochum, T. Schücker, and J. C. Várilly, Commun. Math. Phys., 246, 569–623 (2004); arXiv:hep-th/0307241v3 (2003).

    Article  ADS  MATH  Google Scholar 

  19. M. A. Soloviev, J. Math. Phys., 52, 063502 (2011); arXiv:1012.0669v2 [math-ph] (2010).

    Article  ADS  MathSciNet  Google Scholar 

  20. M. A. Soloviev, Theor. Math. Phys., 172, 885–900 (2012); arXiv:1208.1838v1 [math-ph] (2012).

    Article  MATH  MathSciNet  Google Scholar 

  21. M. A. Soloviev, Theor. Math. Phys., 173, 1359–1376 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. B. Hammou, M. Lagraa, and M. M. Sheikh-Jabbari, Phys. Rev. D, 66, 025025 (2002); arXiv:hep-th/0110291v3 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  23. K. E. Cahill and R. J. Glauber, Phys. Rev., 177, 1857–1881 (1969).

    Article  ADS  Google Scholar 

  24. J. M. Maillard, J. Geom. Phys., 3, 231–261 (1986).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. G. B. Folland, Harmonic Analysis in Phase Space (Ann. Math. Stud., Vol. 122), Princeton Univ. Press, Princeton, N. J. (1989).

    MATH  Google Scholar 

  26. G. S. Agarwal and E. Wolf, Phys. Rev. D, 2, 2161–2186 (1970).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. M. Blaszak and Z. Domański, Ann. Phys., 327, 167–211 (2012); arXiv:1009.0150v2 [math-ph] (2010).

    Article  ADS  MATH  Google Scholar 

  28. G. M. Gelfand and G. E. Shilov, Generalized Functions [in Russian], Vol. 2, Spaces of Basic and Generalized Functions, Fizmatlit, Moscow (1958); English transl., Acad. Press, New York (1968).

    Google Scholar 

  29. G. M. Gelfand and G. E. Shilov, Generalized Functions [in Russian], Vol. 3, Some Question in the Theory of Differential Equations, Fizmatlit, Moscow (1958); English transl.: Vol. 3, Theory of Differential Equations, Acad. Press, New York (1967).

    Google Scholar 

  30. L. Hörmander, An Introduction to Complex Analysis in Several Complex Variables, North-Holland, Amsterdam (1973).

    MATH  Google Scholar 

  31. H. Omori, Y. Maeda, N. Miyazaki, and A. Yoshioka, “Deformation quantization of Fréchet-Poisson algebras: Convergence of the Moyal product,” in: Quantization, Deformations, and Symmetries (Math. Phys. Stud., Vol. 22, G. Dito and D. Sternheimer, eds.), Vol. 2, Kluwer, Dordrecht (2000), pp. 233–245.

    Google Scholar 

  32. H. Omori, Y. Maeda, N. Miyazaki, and A. Yoshioka, “Non-formal deformation quantization of Fréchet-Poisson algebras: The Heisenberg and Lie algebra case,” in: Geometric and Topological Methods for Quantum Field Theory (Contemp. Math., Vol. 434, S. Paycha and B. Uribe, eds.), Amer. Math. Soc., Providence, R. I. (2007), pp. 99–124.

    Chapter  Google Scholar 

  33. M. A. Soloviev, J. Math. Phys., 54, 073517 (2013); arXiv:1312.6571v1 [math-ph] (2013).

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Beiser, H. Römer, and S. Waldmann, Commun. Math. Phys., 272, 25–52 (2007); arXiv:math.QA/0506605v1 (2005).

    Article  ADS  MATH  Google Scholar 

  35. H. Schaefer, Topological Vector Spaces, Springer, New York (1971).

    Book  Google Scholar 

  36. F. A. Berezin and M. A. Shubin, The Schrödinger Equation [in Russian], Moscow State Univ. Press, Moscow (1983); English transl., Kluwer, Dordrecht (1991).

    MATH  Google Scholar 

  37. M. Reed and B. Simon, Methods of Modern Mathetical Physics, Vol. 1, Functional Analysis, Acad. Press, New York (1978).

    Google Scholar 

  38. F. A. Berezin, Math. USSR-Sb., 15, 577–606 (1971).

    Article  Google Scholar 

  39. A. G. Athanassoulis, N. J. Mauser, and T. Paul, J. Math. Pures Appl. (9), 91, 296–338 (2009); arXiv: 0804.0259v1 [math.AP] (2208).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Soloviev.

Additional information

Dedicated to the 75th birthday of Andrei Alekseevich Slavnov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviev, M.A. Star products on symplectic vector spaces: convergence, representations, and extensions. Theor Math Phys 181, 1612–1637 (2014). https://doi.org/10.1007/s11232-014-0239-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-014-0239-x

Keywords

Navigation