Skip to main content
Log in

A matrix model for hypergeometric Hurwitz numbers

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We present multimatrix models that are generating functions for the numbers of branched covers of the complex projective line ramified over n fixed points zi, i = 1, ..., n (generalized Grothendieck’s dessins d’enfants) of fixed genus, degree, and ramification profiles at two points z 1 and zn. We sum over all possible ramifications at the other n-2 points with a fixed length of the profile at z 2 and with a fixed total length of profiles at the remaining n-3 points. All these models belong to a class of hypergeometric Hurwitz models and are therefore tau functions of the Kadomtsev-Petviashvili hierarchy. In this case, we can represent the obtained model as a chain of matrices with a (nonstandard) nearest-neighbor interaction of the type tr MiM 1i+1 . We describe the technique for evaluating spectral curves of such models, which opens the way for obtaining 1/N2-expansions of these models using the topological recursion method. These spectral curves turn out to be algebraic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 10, 2015–2051 (1995); arXiv:hep-th/9312210v1 (1993).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. A. Alexandrov, A. Mironov, A. Morozov, and S. Natanzon, J. Phys. A: Math. Theor., 45, 045209 (2012); arXiv: 1103.4100v1 [hep-th] (2011).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Okounkov and R. Pandharipande, Ann. Math. (2), 163, 517–560 (2006); arXiv:math/0204305v1 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Yu. Orlov and D. M. Shcherbin, Theor. Math. Phys., 128, 906–926 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Yu. Orlov, Theor. Math. Phys., 146, 183–206 (2006).

    Article  MATH  Google Scholar 

  6. K. Takasaki, “Initial value problem for the Toda lattice hierarchy,” in: Group Representations and Systems of Differential Equations (Adv. Stud. Pure Math., Vol. 4, K. Okamoto, ed.), Kinokuniya Company, Tokyo (1984), pp. 139–163.

    Google Scholar 

  7. I. P. Goulden and D. M. Jackson, Adv. Math., 219, 932–951 (2008); arXiv:0803.3980v1 [math.CO] (2008).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Harnad and A. Yu. Orlov, “Hypergeometric τ-functions, Hurwitz numbers, and enumeration of paths,” arXiv:1407.7800v7 [math-ph] (2014).

    Google Scholar 

  9. P. G. Zograf, “Enumeration of Grothendieck’s dessins and KP hierarchy,” arXiv:1312.2538v3 [math.CO] (2013).

    Google Scholar 

  10. M. Kazarian and P. Zograf, “Virasoro constraints and topological recursion for Grothendieck’s dessin counting,” arXiv:1406.5976v1 [math.CO] (2014).

    Google Scholar 

  11. J. Ambjørn and L. Chekhov, Ann. Inst. Henri Poincaré D, 1, 337–361 (2014).

    Article  Google Scholar 

  12. L. Chekhov and Yu. Makeenko, Modern Phys. Lett. A, 7, 1223–1236 (1992); arXiv:hep-th/9201033v1 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and A. Zabrodin, Phys. Lett. B, 275, 311–314 (1992); arXiv:hep-th/9111037v1 (1991); Nucl. Phys. B, 380, 181–240 (1992); arXiv:hep-th/9201013v1 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Alexandrov, A. Mironov, A. Morozov, and S. Natanzon, “On KP-integrable Hurwitz functions,” arXiv: 1405.1395v2 [hep-th] (2014).

    Google Scholar 

  15. G. V. Belyi, Math. USSR-Izv., 14, 247–256 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Grothendieck, “Esquisse d’un programme,” in: Geometric Galois Actions: 1 (London Math. Soc. Lect. Note Ser., Vol. 242, L. Schneps and P. Lochak, eds.), Cambridge Univ. Press, Cambridge (1997), pp. 5–48.

    Google Scholar 

  17. B. Eynard, JHEP, 0411, 031 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  18. L. Chekhov and B. Eynard, JHEP, 0603, 014 (2006); arXiv:hep-th/0504116v1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  19. L. Chekhov, B. Eynard, and N. Orantin, JHEP, 0612, 053 (2006); arXiv:hep-th/0603003v1 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  20. B. Eynard and A. Prats Ferrer, JHEP, 0907, 096 (2009); arXiv:0805.1368v2 [math-ph] (2008).

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Ambjørn, C. F. Kristjansen, and Yu. M. Makeenko, Modern Phys. Lett. A, 7, 3187–3202 (1992); arXiv:hepth/9207020v1 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  22. V. A. Marchenko and L. A. Pastur, Math. USSR-Sb., 1, 457–483 (1967).

    Article  Google Scholar 

  23. L. Chekhov, J. Phys. A: Math. Theor., 39, 8857–8893 (2006); arXiv:hep-th/0602013v1 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. A. Mironov, A. Morozov, and G. Semenoff, Internat. J. Mod. Phys. A, 10, 2015–2051 (1995); arXiv:hep-th/9312210v1 (1993).

    Article  ADS  MATH  Google Scholar 

  25. M. Guay-Paquet and J. Harnad, “Generating functions for weighted Hurwitz numbers,” arXiv:1408.6766v6 [math-ph] (2014).

    Google Scholar 

  26. A. Alexandrov, A. Morozov, and A. Mironov, Internat. J. Mod. Phys. A, 19, 4127–4165 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. V. Bouchard and M. Mariño, “Hurwitz numbers, matrix models, and enumerative geometry,” in: From Hodge Theory to Integrability and TQFT: tt*-Geometry (Proc. Symp. Pure Math., Vol. 78, R. Y. Donagi and K. Wendland, eds.), Amer. Math. Soc., Providence, R. I. (2008), pp. 263–283; arXiv:0709.1458v2 [math.AG] (2007).

    Google Scholar 

  28. A. Morozov and Sh. Shakirov, JHEP, 0904, 064 (2009); arXiv:0902.2627v3 [hep-th] (2009).

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Borot, B. Eynard, M. Mulase, and B. Safnuk, J. Geom. Phys., 61, 522–540 (2011); arXiv:0906.1206v1 [math-ph] (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. L. Chekhov and Yu. Makeenko, Phys. Lett. B, 278, 271–278 (1992); arXiv:hep-th/9202006v1 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  31. L. Chekhov, Acta Appl. Math., 48, 33–90 (1997); arXiv:hep-th/9509001v1 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  32. P. Norbury, Math. Res. Lett., 17, 467–481 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  33. N. Do and P. Norbury, “Pruned Hurwitz numbers,” arXiv:1312.7516v1 [math.GT] (2013).

    Google Scholar 

  34. M. Kazarian, Adv. Math., 221, 1–21 (2009).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ambjørn.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 181, No. 3, pp. 421–435, December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambjørn, J., Chekhov, L.O. A matrix model for hypergeometric Hurwitz numbers. Theor Math Phys 181, 1486–1498 (2014). https://doi.org/10.1007/s11232-014-0229-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-014-0229-z

Keywords

Navigation