Skip to main content
Log in

Solutions of the Yang-Baxter equation associated with a topological basis and applications in quantum information

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss a new type of solutions of the Yang-Baxter equation, called type-II solutions. They are related to quantum entanglements. The action of the corresponding braiding operator on the topological basis associated with a topological quantum field theory generates a (2J+1)-dimensional matrix form of the R-matrix for spin J, i.e., the Wigner function D with the spectral parameter θ denoting the entanglement degree. We present concrete examples for J = 1/2 and J = 1 in an explicit form. We show that the Hamiltonian related to the type-II R-matrix is Kitaev’s toy model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. Yang, Phys. Rev. Lett., 19, 1312–1315 (1967).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. C. N. Yang, Phys. Rev., 168, 1920–1923 (1968).

    Article  ADS  Google Scholar 

  3. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Acad. Press, London (1982).

    MATH  Google Scholar 

  4. L. A. Takhtadzhyan and L. D. Faddeev, Russ. Math. Surveys, 34, No. 5, 11–68 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  5. L. D. Faddeev, Sov. Sci. Rev. Math. C, 1, 107–155 (1980).

    MATH  Google Scholar 

  6. P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform method recent developments,” in: Integrable Quantum Field Theories (Lect. Notes Phys., Vol. 151, J. Hietarinta and C. Montonen, eds.), Springer, Berlin (1982), p. 61–119.

    Chapter  Google Scholar 

  7. P. P. Kulish and E. K. Sklyanin, J. Soviet Math., 19, 1596–1620 (1982).

    Article  MATH  Google Scholar 

  8. L. Faddeev, M. Henneaus, R. Kashaev, F. Lambert, and A. Volkov, eds., Bethe Ansatz: 75 Years Later, Vrije Universiteit Brussel, Brussels (2006).

    Google Scholar 

  9. M. Jimbo, ed., Yang-Baxter Equation in Integrable Systems (Adv. Ser. Math. Phys., Vol. 10), World Scientific, Singapore (1990).

    MATH  Google Scholar 

  10. C. N. Yang and M.-L. Ge, eds., Braid Group, Knot Theory, and Statistical Mechanics (Adv. Ser. Math. Phys., Vol. 9), World Scientific, Singapore (1989).

    MATH  Google Scholar 

  11. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993).

    Book  MATH  Google Scholar 

  12. A. B. Zamolodchikov and Al. B. Zamolodchikov, Ann. Phys., 120, 253–291 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  13. L. H. Kauffman, Knots and Physics (Ser. Knots and Everything, Vol. 1), World Scientific, Singapore (1991).

    MATH  Google Scholar 

  14. D. A. Ivanov, Phys. Rev. Lett., 86, 268–271 (2001).

    Article  ADS  Google Scholar 

  15. D. C. Mattis, The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension, World Scientific, Singapore (1993).

    Google Scholar 

  16. V. G. Drinfeld, J. Soviet Math., 41, 898–915 (1988).

    Article  MathSciNet  Google Scholar 

  17. J.-L. Chen, K. Xue, and M.-L. Ge, Phys. Rev. A, 76, 042324 (2007); arXiv:0704.0709v3 [quant-ph] (2007).

    Article  ADS  Google Scholar 

  18. Sh.-W. Hu, K. Xue, and M.-L. Ge, Phys. Rev. A, 78, 022319 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  19. M. H. Freedman, M. Larsen, and Z. Wang, Commun. Math. Phys., 227, No. 3 (2002).

    MathSciNet  Google Scholar 

  20. S. D. Sarma, M. Freedman, and C. Nayak, Phys. Rev. Lett., 94, 166802 (2005).

    Article  ADS  Google Scholar 

  21. J. M. Franko, E. C. Rowell, and Z. Wang, J. Knot Theory Ramifications, 15, 413–427 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  22. Z. Wang, “Topologization of electron liquids with Chern-Simons theory and quantum computation,” in: Differential Geometry and Physics (Nankai Tracts Math., Vol. 10, M.-L. Ge and W. Zhang, eds.), World Scientific, Singapore (2006), pp. 106–120.

    Google Scholar 

  23. C. Zheng, J.-L. Li, S.-Y. Song, and G. L. Long, J. Opt. Soc. Am. B, 30, 1688–1693 (2013).

    Article  Google Scholar 

  24. A. Yu. Kitaev, Phys-Usp., 44, 131–136 (2001); arXiv:cond-mat/0010440v2 (2000).

    Article  ADS  Google Scholar 

  25. L. H. Kauffman and S. J. Lomonaco Jr., New J. Phys., 6, 134 (2004).

    Article  ADS  Google Scholar 

  26. Y. Zhang, L. H. Kauffman, and M.-L. Ge, Int. J. Quantum Inform., 3, 669–678 (2005).

    Article  MATH  Google Scholar 

  27. C. Nayak and F. Wilczek, Nucl. Phys. B, 479, 529–553 (1996); arXiv:cond-mat/9605145v1 (1996).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, Rev. Modern Phys., 80, 1083–1159 (2008); arXiv:0707.1889v2 [cond-mat.str-el] (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. K. Niu, K. Xue, Q. Zhao, and M.-L. Ge, J. Phys. A, 44, 265304 (2011).

    Article  ADS  Google Scholar 

  30. Q. Zhao, R.-Y. Zhang, K. Xue, and M.-L. Ge, “Topological basis associated with BWMA, extremes of L1-norm in quantum information and applications in physics,” arXiv:1211.6178v1 [quant-ph] (2012).

    Google Scholar 

  31. V. F. R. Jones, Commun. Math. Phys., 125, 459–467 (1989).

    Article  ADS  MATH  Google Scholar 

  32. M. Jimbo, Commun. Math. Phys., 102, 537–547 (1986).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Y. Cheng, M.-L. Ge, and K. Xue, Commun. Math. Phys., 136, 195–208 (1991).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. M.-L. Ge, Y.-S. Wu, and K. Xue, Internat. J. Modern Phys. A, 6, 3735–3779 (1991).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. H. N. V. Temperley and E. H. Lieb, Proc. Roy. Soc. London Ser. A, 322, 251–280 (1971).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. M. Jimbo, Lett. Math. Phys., 10, 63–69 (1985).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. M.-L. Ge and A. C. T. Wu, J. Phys. A, 24, L725–L732 (1991).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. P. Fendley and E. Fradkin, Phys. Rev. B, 72, 024412 (2005); arXiv:cond-mat/0502071v2 (2005).

    Article  ADS  Google Scholar 

  39. F. D. M. Haldane, Phys. Rev. Lett., 50, 1153–1156 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  40. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum [in Russian], Leningrad, Moscow (1975); English transl., World Scientific, Singapore (1988).

    Google Scholar 

  41. A. M. Perelomov, Soviet Phys. Usp., 20, 703–720 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo-Lin Ge.

Additional information

This paper is dedicated to Professor L. D. Faddeev, who has been guiding our research. We heartily express our deepest respects to him. Faddeev and his colleagues contribute greatly not only with their scientific achievements but also with help in developing the Nankai group.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, ML., Yu, LW., Xue, K. et al. Solutions of the Yang-Baxter equation associated with a topological basis and applications in quantum information. Theor Math Phys 181, 1145–1163 (2014). https://doi.org/10.1007/s11232-014-0205-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-014-0205-7

Keywords

Navigation