Skip to main content
Log in

Cluster networks and Bruhat-Tits buildings

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a clustering procedure in the case where a family of metrics is used instead of a fixed metric. In this case, a classification network (a directed acyclic graph with nondirected cycles) is obtained instead of a classification tree. We discuss the relation to Bruhat-Tits buildings and introduce the notion of the dimension of a general cluster network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio and S. V. Kozyrev, p-Adic Numbers Ultrametric Anal. Appl., 4, 167–178 (2012); arXiv:1204.5952v1 [cs.DS] (2012).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. V. Kozyrev, Theor. Math. Phys., 164, 1163–1168 (2010).

    Article  MATH  Google Scholar 

  3. J. Benois-Pineau and A. Khrennikov, Computer J., 53, 417–431 (2010).

    Article  Google Scholar 

  4. J. Benois-Pineau, A. Yu. Khrennikov, and N. Kotovich, Dokl. Math., 64, 450–455 (2001).

    Google Scholar 

  5. F. Murtagh, Multidimensional Clustering Algorithms, Physica-Verlag, Heidelberg (1985).

    MATH  Google Scholar 

  6. P. B. Garrett, Buildings and Classical Groups, Chapman and Hall, London (1997).

    Book  MATH  Google Scholar 

  7. A. Weil, Basic Number Theory, Springer, New York (1967).

    Book  MATH  Google Scholar 

  8. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York (1995).

    Book  MATH  Google Scholar 

  9. E. V. Koonin, The Logic of Chance: The Nature and Origin of Biological Evolution, FT Press Science, Upper Saddle River, N. J. (2011).

    Google Scholar 

  10. D. H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic Networks, Cambridge Univ. Press, Cambridge (2010).

    Book  Google Scholar 

  11. A. Dress, K. T. Huber, J. Koolen, V. Moulton, and A. Spillner, Basic Phylogenetic Combinatorics, Cambridge Univ. Press, Cambridge (2012).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kozyrev.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 180, No. 2, pp. 234–244, August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyrev, S.V. Cluster networks and Bruhat-Tits buildings. Theor Math Phys 180, 958–966 (2014). https://doi.org/10.1007/s11232-014-0191-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-014-0191-9

Keywords

Navigation