Skip to main content
Log in

Maslov’s canonical operator, Hörmander’s formula, and localization of the Berry-Balazs solution in the theory of wave beams

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

For three-dimensional Schrödinger equations, we study how to localize exact solutions represented as the product of an Airy function (Berry-Balazs solutions) and a Bessel function and known as Airy-Bessel beams in the paraxial approximation in optics. For this, we represent such solutions in the form of Maslov’s canonical operator acting on compactly supported functions on special Lagrangian manifolds. We then use a result due to Hörmander, which permits using the formula for the commutation of a pseudodifferential operator with Maslov’s canonical operator to “move” the compactly supported amplitudes outside the canonical operator and thus obtain effective formulas preserving the structure based on the Airy and Bessel functions. We discuss the influence of dispersion effects on the obtained solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lax, W. H. Louisell, and W. B. McKnight, Phys. Rev. A, 11, 1365–1370 (1975).

    Article  ADS  Google Scholar 

  2. Lord Rayleigh, Phil. Mag., 43, No. 261, 125–132 (1897); J. Durnin, J. Opt. Soc. Amer., 4, 651–654 (1987); J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett., 58, 1399–1501 (1987); D. McGloin and K. Dholakia, Contemporary Phys., 46, 15–28 (2005); A. P. Kiselev, Optics and Spectroscopy, 102, 603–622 (2007); G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett., 99, 213901 (2007); A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, Nature Photonics, 4, 102–106 (2010); K. Dholakia and T. Cizmar, Nature Photonics, 5, 335–342 (2011); A. P. Kiselev, A. B. Plachenov, and P. Chamorro-Posada, Phys. Rev. A, 85, 043835 (2012); T. Graf, J. Maloney, and S. Vankataramani, Phys. D, 243, 32–44 (2013).

    Article  MATH  Google Scholar 

  3. M. V. Berry and N. L. Balazs, Amer. J. Phys., 47, 264–267 (1979).

    Article  ADS  Google Scholar 

  4. V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  5. V. S. Vladimirov and V. V. Zharinov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (2000).

    MATH  Google Scholar 

  6. V. P. Maslov, Perturbation Theory and Asymptotic Methods [in Russian], Moscow State Univ. Press, Moscow (1965).

    Google Scholar 

  7. V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation for the Equations of Quantum Mechanics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  8. L. Hörmander, Acta Math., 127, 79–183 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, and T. Ya. Tudorovskii, Theor. Math. Phys., 177, 1579–1605 (2013).

    Article  Google Scholar 

  10. S. Yu. Dobrokhotov, G. Makrakis, and V. E. Nazaikinskii, “Fourier integrals and a new representation of Maslov’s canonical operator near caustics,” in: Spectral Theory and Differential Equations (V. A. Marchenko 90th Anniversary Collection), Amer. Math. Soc., Providence, R. I. (2014); arXiv:1307.2292v1 [math-ph] (2013).

    Google Scholar 

  11. V. P. Maslov, Operator Methods [in Russian], Nauka, Moscow (1973); English transl.: Operational Methods, Mir, Moscow (1976).

    Google Scholar 

  12. V. P. Maslov, The Complex WKB Method in Nonlinear Equations [in Russian], Nauka, Moscow (1977).

    MATH  Google Scholar 

  13. V. G. Danilov and Le Vu An’, Math. USSR-Sb., 38, 293–334 (1981); V. L. Dubnov, V. P. Maslov, and V. E. Nazaikinskii, Russ. J. Math. Phys., 3, 141–190 (1995).

    Article  MATH  Google Scholar 

  14. Wolfram Research, Mathematica, www.wolfram.com/mathematica/, Champaign, Ill. (2014).

    Google Scholar 

  15. S. Yu. Dobrokhotov, B. Tirozzi, and A. I. Shafarevich, Math. Notes, 82, 713–717 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  16. G. A. Kalyabin, Proc. Steklov Inst. Math., 255, 150–158 (2006).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Dobrokhotov.

Additional information

To the memory of Vasilii Sergeevich Vladimirov

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 180, No. 2, pp. 162–188, August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrokhotov, S.Y., Makrakis, G.N. & Nazaikinskii, V.E. Maslov’s canonical operator, Hörmander’s formula, and localization of the Berry-Balazs solution in the theory of wave beams. Theor Math Phys 180, 894–916 (2014). https://doi.org/10.1007/s11232-014-0187-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-014-0187-5

Keywords

Navigation