Skip to main content
Log in

Box ladders in a noninteger dimension

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a family of triangle-ladder diagrams that can be calculated using the Belokurov-Usyukina loop reduction technique in d=4−2ɛ dimensions. The main idea of the approach we propose is to generalize this loop reduction technique existing in d=4 dimensions. We derive a recurrence relation between the result for an L-loop triangle-ladder diagram of this family and the result for an (L-1)-loop triangleladder diagram of the same family. Because the proposed method combines analytic and dimensional regularizations, we must remove the analytic regularization at the end of the calculation by taking the double uniform limit in which the parameters of the analytic regularization vanish. In the position space, we obtain a diagram in the left-hand side of the recurrence relations in which the rung indices are 1 and all other indices are 1 - ɛ in this limit. Fourier transforms of diagrams of this type give momentum space diagrams with rung indices 1 - ɛ and all other indices 1. By a conformal transformation of the dual space image of this momentum space representation, we relate such a family of triangle-ladder momentum diagrams to a family of box-ladder momentum diagrams with rung indices 1 - ɛ and all other indices 1. Because any diagram from this family is reducible to a one-loop diagram, the proposed generalization of the Belokurov-Usyukina loop reduction technique to a noninteger number of dimensions allows calculating this family of box-ladder diagrams in the momentum space explicitly in terms of Appell’s hypergeometric function F 4 without expanding in powers of the parameter ɛ in an arbitrary kinematic region in the momentum space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Broadhurst and A. I. Davydychev, Nucl. Phys. Proc. Suppl., 205–206, 326–330 (2010); arXiv:1007.0237v1 [hep-th] (2010).

    Article  Google Scholar 

  2. Z. Bern, L. J. Dixon, and V. A. Smirnov, Phys. Rev. D, 72, 085001 (2005); arXiv:hep-th/0505205v3 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  3. V. A. Smirnov, Evaluating Feynman Integrals (Springer Tracts Mod. Phys., Vol. 211), Springer, Berlin (2004).

    MATH  Google Scholar 

  4. N. I. Ussyukina and A. I. Davydychev, Phys. Lett. B, 298, 363–370 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  5. N. I. Ussyukina and A. I. Davydychev, Phys. Lett. B, 305, 136–143 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  6. E. E. Boos and A. I. Davydychev, Theor. Math. Phys., 89, 1052–1064 (1991).

    Article  MathSciNet  Google Scholar 

  7. A. I. Davydychev, J. Phys. A, 25, 5587–5596 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. V. V. Belokurov and N. I. Ussyukina, J. Phys. A, 16, 2811–2816 (1983).

    Article  ADS  Google Scholar 

  9. N. I. Usyukina, Theor. Math. Phys., 54, 78–81 (1983).

    Article  Google Scholar 

  10. N. I. Ussyukina, Phys. Lett. B, 267, 382–388 (1991); N. I. Usyukina, Theor. Math. Phys., 87, 627–632 (1991).

    Article  ADS  Google Scholar 

  11. D. J. Broadhurst, Phys. Lett. B, 307, 132–139 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  12. I. Kondrashuk and A. Vergara, JHEP, 1003, 051 (2010); arXiv:0911.1979v2 [hep-th] (2009).

    Article  ADS  Google Scholar 

  13. I. Gonzalez and I. Kondrashuk, Phys. Part. Nucl., 44, 268–271 (2013); arXiv:1206.4763v1 [hep-th] (2012).

    Article  Google Scholar 

  14. P. Allendes, B. Kniehl, I. Kondrashuk, E. A. Notte Cuello, and M. Rojas Medar, Nucl. Phys. B, 870, 243–277 (2013); arXiv:1205.6257v2 [hep-th] (2012).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. M. D’Eramo, L. Peliti, and G. Parisi, Lett. Nuovo Cimento, 2, 878–880 (1971).

    Article  Google Scholar 

  16. A. N. Vasil’ev, Yu. M. Pis’mak, and Yu. R. Khonkonen, Theor. Math. Phys., 47, 465–475 (1981).

    Article  Google Scholar 

  17. A. N. Vasil’ev, Quantum Field Renormalization Group in Critical Behavior Theory and Stochastic Dynamics [in Russian], PIYaF, St. Petersburg (1998); English transl.: The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, CRC Press, Boca Raton, Fla. (2004).

    Google Scholar 

  18. D. I. Kazakov, “Analytical methods for multiloop calculations: Two lectures on the method of uniqueness,” Preprint No. JINR-E2-84-410, Joint Inst. Nucl. Res., Dubna (1984).

    Google Scholar 

  19. G. Cvetič, I. Kondrashuk, A. Kotikov, and I. Schmidt, Internat. J. Mod. Phys. A, 22, 1905–1934 (2007); arXiv:hep-th/0604112v2 (2006).

    Article  ADS  MATH  Google Scholar 

  20. I. Kondrashuk and A. Kotikov, “Fourier transforms of UD integrals,” in: Analysis and Mathematical Physics (B. Gustafsson and A. Vasiliev, eds.), Birkhäuser, Basel (2009), pp. 337–348; arXiv:0802.3468v1 [hep-th] (2008).

    Chapter  Google Scholar 

  21. I. Kondrashuk and A. Kotikov, JHEP, 0808, 106 (2008); arXiv:0803.3420v2 [hep-th] (2008).

    Article  ADS  Google Scholar 

  22. P. Allendes, N. Guerrero, I. Kondrashuk, and E. A. Notte Cuello, J. Math. Phys., 51, 052304 (2010); arXiv:0910.4805v3 [hep-th] (2009).

    Article  MathSciNet  ADS  Google Scholar 

  23. D. Binosi and L. Theussl, Comp. Phys. Comm., 161, 76–86 (2004); arXiv:hep-ph/0309015v2 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Gonzalez.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 175, No. 1, pp. 276–305, November, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, I., Kondrashuk, I.N. Box ladders in a noninteger dimension. Theor Math Phys 177, 1515–1539 (2013). https://doi.org/10.1007/s11232-013-0120-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0120-3

Keywords

Navigation