Skip to main content
Log in

Influence of powerful nanosecond electrical pulses on an array of double-walled nanotubes

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We obtain a system of equations for the surface current density by taking the effect of intershell tunneling in the array of double-walled carbon nanotubes in the presence of a nonstationary electrical pulse into account. We show that if there is no tunneling, then the resonance frequency of surface currents for the symmetric mode increases by a factor of approximately \(\sqrt 2 \) in addition to the twofold increase in their concentration in the direction transverse to the nanotube axis as compared with single-walled nanotubes. We show that bending the carbon nanotube surfaces does not affect the electrical conduction in the millimeter range of generated radiation. We discuss the influence of the nonstationary electrical pulse on the asymmetric mode of longitudinal surface currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. M. Yevtushenko, G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, and D. A. Romanov, Phys. Rev. Lett., 79, 1102–1105 (1997).

    Article  ADS  Google Scholar 

  2. G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, and O. M. Yevtushenko, Phys. Rev. B, 57, 9485–9497 (1998).

    Article  ADS  Google Scholar 

  3. G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, Phys. Rev. B, 60, 17136–17149 (1999).

    Article  ADS  Google Scholar 

  4. S. A. Maksimenko and G. Ya. Slepyan, Radiomekh. i Elektron., 47, 261–280 (2002).

    Google Scholar 

  5. S. A. Maksimenko and G. Ya. Slepyan, Vestn. Fond Fund. Issled., No. 4, 92–113 (2006).

    Google Scholar 

  6. S. A. Maksimenko and G. Ya. Slepyan, “Nano electromagnetics of low-dimensonal structures,” in: The Handbook of Nanotechnology: Nanometer Structure Theory, Modeling, and Simulation (A. Lakhtakia, ed.), SPIE Press, Bellingham, Wa. (2004), pp. 145–206.

    Chapter  Google Scholar 

  7. S. A. Maksimenko, G. Ya. Slepyan, K. B. Batrakov, A. A. Khrushchinsky, P. P. Kuznir, A. M. Nemilentsau, and M. V. Shuba, “Electromagnetic waves in carbon nanostructures,” in: Carbon Nanotubes and Related Structures E (V. Blank and B. Kulnitskiy, eds.), Research Signpost, Trivandrum, India (2008), pp. 147–187.

    Google Scholar 

  8. M. J. Hagmann, IEEE Trans. on Nanotechnol., 4, 289–296 (2005).

    Article  ADS  Google Scholar 

  9. G. Miano, C. Forestiere, A. Maffucci, S. A. Maksimenko, and G. Ya. Slepyan, IEEE Trans. on Nanotechnol., 10, 135–149 (2011).

    Article  ADS  Google Scholar 

  10. C. Forestiere, A. Maffucci, S. A. Maksimenko, G. Miano, and G. Ya. Slepyan, IEEE Trans. on Nanotechnol., 11, 554–564 (2012).

    Article  ADS  Google Scholar 

  11. P. N. D’yachkov, Electronic Properties and Applications of Nanotubes [in Russian], BINOM Laboratoriya znanii, Moscow (2011).

    Google Scholar 

  12. C. Rutherglen and P. Burke, Small, 5, 884–906 (2009).

    Article  Google Scholar 

  13. P. Burke, S. Li, and Z. Yu, IEEE Trans. on Nanotechnol., 5, 314–334 (2006).

    Article  ADS  Google Scholar 

  14. O. V. Kibis, M. E. Portnoi, Tech. Phys. Lett., 31, No. 15, 85–89 (2005).

    Google Scholar 

  15. K. G. Batrakov, S. A. Maksimenko, P. P. Kuzhir, and C. Thomsen, Phys. Rev. B., 79, 125408 (2009).

    Article  ADS  Google Scholar 

  16. G. Ya. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, Phys. Rev. B, 81, 205423 (2010).

    Article  ADS  Google Scholar 

  17. K. G. Batrakov, O. V. Kibis, P. P. Kuzhir, M. Rosenau da Costa, and M. E. Portnoi, J. Nanophoton., 4, 041665 (2010).

    Article  ADS  Google Scholar 

  18. O. V. Kibis, M. Rosenau da Costa, and M. E. Portnoi, Nano Lett., 7, 3414–3417 (2007).

    Article  ADS  Google Scholar 

  19. M. E. Portnoi, O. V. Kibis, and M. Rosenau da Costa, Superlattices and Microstructures, 43, 399–407 (2008).

    Article  ADS  Google Scholar 

  20. M. B. Belonenko, S. Yu. Glazov, and N. E. Mescheryakova, Semiconductors, 44, 1211–1216 (2010).

    Article  ADS  Google Scholar 

  21. N. R. Sadykov and N. A. Scorkin, Semiconductors, 46, 159–164 (2012).

    Article  ADS  Google Scholar 

  22. N. R. Sadykov and N. A. Scorkin, Semiconductors, 46, 790–795 (2012).

    Article  ADS  Google Scholar 

  23. N. R. Sadykov and N. A. Scorkin, Atmospheric and Oceanic Optics, 25, 372–376 (2012).

    Article  Google Scholar 

  24. M. V. Shuba, G. Ya. Slepyan, S. A. Maksimenko, C. Thomson, and A. Lakhtakia, Phys. Rev. B, 79, 155403 (2009).

    Article  ADS  Google Scholar 

  25. G. Ya. Slepyan, M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, Phys. Rev. B, 73, 195416 (2006).

    Article  ADS  Google Scholar 

  26. N. R. Sadykov and N. A. Scorkin, Atmospheric and Oceanic Optics, 26, No. 2, 160–165 (2013).

    Google Scholar 

  27. V. V. Vatygin and I. N. Toptygin, Modern Electrodynamics: Part 1. Microscopic Theory [in Russian], IKI, Moscow (2003).

    Google Scholar 

  28. M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, Phys. Rev. B, 76, 155407 (2007).

    Article  ADS  Google Scholar 

  29. N. R. Sadykov and N. A. Scorkin, Semiconductors, 46, 1020–1026 (2012).

    Article  ADS  Google Scholar 

  30. G. A. Mesyats and M. I. Yalandin, Phys. Usp., 48, 211–229 (2005).

    Article  ADS  Google Scholar 

  31. C. I. Kane and E. J. Mele, Phys. Rev. Lett., 78, 1932–1935 (1997).

    Article  ADS  Google Scholar 

  32. M. F. Lin, Phys. Rev. B, 58, 3629–3632 (1998).

    Article  ADS  Google Scholar 

  33. T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, Phys. Rev. Lett., 101, 267403 (2008).

    Article  ADS  Google Scholar 

  34. F. Borondics, K. Kamarás, M. Nikolou, D. B. Tanner, Z. H. Chen, and A. G. Rinzler, Phys. Rev. B., 74, 045431 (2006); arXiv:cond-mat/0512667v3 (2005).

    Article  ADS  Google Scholar 

  35. S. A. Maksimenko and G. Ya. Slepyan, “Electrodynamic properties of carbon nanotubes,” in: Electromagnetic Fields in Unconventional Materials and Structures (O. N. Singh and A. Lakhtakia, eds.), Wiley, New York (2000), pp. 217–255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Sadykov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 177, No. 1, pp. 163–176, October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadykov, N.R. Influence of powerful nanosecond electrical pulses on an array of double-walled nanotubes. Theor Math Phys 177, 1423–1434 (2013). https://doi.org/10.1007/s11232-013-0114-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0114-1

Keywords

Navigation