Skip to main content
Log in

Generalized interaction in multigravity

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a general approach to describing the interaction in multigravity models in a D-dimensional space-time. We present various possibilities for generalizing the invariant volume. We derive the most general form of the interaction potential, which becomes a Pauli-Fierz-type model in the bigravity case. Analyzing this model in detail in the (3+1)-expansion formalism and also requiring the absence of ghosts leads to this bigravity model being completely equivalent to the Pauli-Fierz model. We thus in a concrete example show that introducing an interaction between metrics is equivalent to introducing the graviton mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. D. Mannheim, Progr. Part. Nucl. Phys., 56, 340–445 (2006).

    Article  ADS  Google Scholar 

  2. H. F. M. Goenner, Living Rev. Relativ., 7, 2004–2 (2004).

    MathSciNet  ADS  Google Scholar 

  3. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York (1972).

    Google Scholar 

  4. R. M. Wald, General Relativity, Univ. Chicago Press, Chicago (1984).

    Book  MATH  Google Scholar 

  5. C. J. Isham, A. Salam, and J. Strathdee, Phys. Rev. D, 3, 867–873 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  6. P. C. Aichelburg, R. Mansouri, and H. K. Urbantke, Phys. Rev. Lett., 27, 1533–1534 (1971).

    Article  ADS  Google Scholar 

  7. P. C. Aichelburg, Phys. Rev. D, 8, 377–384 (1973).

    Article  ADS  Google Scholar 

  8. I. I. Kogan and G. G. Ross, Phys. Lett. B, 485, 255–262 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. I. I. Kogan, S. Mouslopoulos, A. Papazoglou, and G. G. Ross, Nucl. Phys. B, 595, 225–249 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. I. I. Kogan, S. Mouslopoulos, and A. Papazoglou, Phys. Lett. B, 501, 140–149 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. C. Deffayet and J. Mourad, Phys. Lett. B, 589, 48–58 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. C. Deffayet and J. Mourad, Internat. J. Theoret. Phys., 43, 855–864 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. R. Garattini, J. Phys. A, 40, 7055–7060 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. D. Blas, AIP Conf. Proc., 841, 397–401 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Hannestad, Internat. J. Mod. Phys. A, 21, 1938–1949 (2006); arXiv:astro-ph/0509320v2 (2005).

    Article  ADS  Google Scholar 

  16. A. A. Grib and Yu. V. Pavlov, Grav. Cosmol., 12, 159–162 (2006).

    ADS  MATH  Google Scholar 

  17. S. L. Dubovsky, P. G. Tinyakov, and I. I. Tkachev, Phys. Rev. Lett., 94, 181102 (2005).

    Article  ADS  Google Scholar 

  18. T. Damour, I. I. Kogan, and A. Papazoglou, Phys. Rev. D, 66, 104025 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  19. C. Deffayet, G. Dvali, and G. Gabadadze, Phys. Rev. D, 65, 044023 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  20. T. Damour and I. I. Kogan, Phys. Rev. D, 66, 104024 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  21. C. de Rham and G. Gabadadze, Phys. Rev. D, 82, 044020 (2010).

    Article  ADS  Google Scholar 

  22. D. G. Boulware and S. Deser, Phys. Rev. D, 6, 3368–3382 (1972).

    Article  ADS  Google Scholar 

  23. K. Koyama, G. Niz, and G. Tasinato, Phys. Rev D, 84, 064033 (2011).

    Article  ADS  Google Scholar 

  24. C. de Rham, G. Gabadadze, and A. J. Tolley, JHEP, 1111, 093 (2011).

    Article  Google Scholar 

  25. A. H. Chamseddine and V. Mukhanov, JHEP, 1108, 091 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  26. S. F. Hassan and R. A. Rosen, Phys. Rev. Lett., 108, 041101 (2012).

    Article  ADS  Google Scholar 

  27. V. I. Zakharov, JETP Lett., 12, 312–315 (1970).

    ADS  Google Scholar 

  28. H. van Dam and M. J. G. Veltman, Nucl. Phys. B, 22, 397–411 (1970).

    Article  ADS  Google Scholar 

  29. A. I. Vainshtein, Phys. Lett. B, 39, 393–394 (1972).

    Article  ADS  Google Scholar 

  30. E. Babichev, C. Deffayet, and R. Ziour, Phys. Rev. D, 82, 104008 (2010).

    Article  ADS  Google Scholar 

  31. V. A. Rubakov and P. G. Tinyakov, Phys.-Usp., 51, 759–792 (2008).

    Article  ADS  Google Scholar 

  32. K. Hinterbichler, Rev. Modern Phys., 84, 671–710 (2012).

    Article  ADS  Google Scholar 

  33. N. Boulanger, T. Damour, L. Gualtieri, and M. Henneaux, Nucl. Phys. B, 597, 127–171 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. S. A. Duplij and A. T. Kotvytskiy, J. Kharkiv Univ. Ser. Nuclei, Particles, Fields, 784, No. 4(36), 61–66 (2007).

    Google Scholar 

  35. R. Hermann, Quantum and Fermion Differential Geometry Part A, Mathematical Science Press, Brookline, Mass. (1977).

    MATH  Google Scholar 

  36. A. T. Kotvytskiy and D. V. Kruchkov, Acta Polytechnika, 51, 54–58 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Duplij.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 177, No. 1, pp. 137–150, October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duplij, S.A., Kotvytskiy, A.T. Generalized interaction in multigravity. Theor Math Phys 177, 1400–1411 (2013). https://doi.org/10.1007/s11232-013-0112-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0112-3

Keywords

Navigation