Skip to main content
Log in

Oscillations of the inertia moment of a finite Fermi system in the cranking model framework

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the framework of the cranking model with the potential of an anisotropic harmonic oscillator, we rigorously calculate how the moment of inertia of a finite Fermi system depends on the chemical potential at finite temperatures in the adiabatic limit analytically. We show that this dependence involves smooth and oscillating components. We find analytic expressions for these components at arbitrary temperatures and axial deformation frequencies. We show that oscillations of the moment of inertia increase as the spherical limit is approached and decrease exponentially as the temperature increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Inglis, Phys. Rev., 96, 1059–1065 (1954); 97, 701–706 (1955); 103, 1786–1795 (1956).

    Article  ADS  MATH  Google Scholar 

  2. A. Bohr and B. R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk., 30, No. 1 (1955).

    Google Scholar 

  3. A. Bohr and B. Mottelson, Nuclear Structure, Vol. 2, Benjamin, New York (1975).

    Google Scholar 

  4. S. Fraundorf and V. V. Pashkevich, Sov. J. Nucl. Phys., 20, 588 (1974).

    Google Scholar 

  5. I. N. Mikhailov, K. Neergard, V. V. Pashkevich, and S. Frauendorf, Sov. J. Part. Nucl. Phys., 8, 1338–1411 (1977).

    Google Scholar 

  6. M. Brack and R. K. Bhaduri, Semiclassical Physics (Frontiers in Physics, Vol. 96), Westview, Boulder, Co. (2003).

    MATH  Google Scholar 

  7. K. Bencheikh, P. Quentin, and J. Bartel, Nucl. Phys. A, 571, 518–540 (1994).

    Article  ADS  Google Scholar 

  8. E. Chabanat, J. Meyer, K. Bencheikh, P. Quentin, and J. Bartel, Phys. Lett. B, 325, 13–19 (1994).

    Article  ADS  Google Scholar 

  9. V. M. Strutinsky, Nucl. Phys. A, 95, 420–442 (1967); 122, 1–33 (1968).

    Article  ADS  Google Scholar 

  10. M. Brack, L. Damgaard, A. S. Jensen, H. C. Pauli, V. M. Strutinsky, and C. Y. Wong, Rev. Modern Phys., 44, 320–406 (1972).

    Article  ADS  Google Scholar 

  11. V. G. Zelevinskii, Sov. J. Nucl. Phys., 22, 565 (1975).

    Google Scholar 

  12. L. Jacak, W. Nawrocka, R. G. Nazmitdinov, and A. Wojs, J. Phys. G, 21, 1205–1216 (1995).

    Article  ADS  Google Scholar 

  13. A. G. Magner, A. S. Sitdikov, A. A. Khamzin, and J. Bartel, Phys. Rev. C, 81, 064302 (2010).

    Article  ADS  Google Scholar 

  14. M. J. Gutzwiller, J. Math. Phys., 12, 343–358 (1967).

    Article  ADS  Google Scholar 

  15. V. M. Strutinsky and A. G. Magner, Sov. J. Part. Nucl. Phys., 7, 138 (1976).

    Google Scholar 

  16. A. G. Magner, A. S. Sitdikov, A. A. Khamzin, J. Bartel, and A. M. Gzhebinsky, Phys. Atom. Nucl., 73, 1398–1404 (2010).

    Article  ADS  Google Scholar 

  17. A. G. Magner, A. M. Gzhebinsky, A. S. Sitdikov, A. A. Khamzin, and J. Bartel, Internat. J. Mod. Phys. E, 19, 735–746 (2010).

    Article  ADS  Google Scholar 

  18. A. R. Minnullin and D. A. Tayurskii, JETP Lett., 72, 616–620 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Khamzin.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 176, No. 3, pp. 458–476, September 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khamzin, A.A., Nikitin, A.S., Sitdikov, A.S. et al. Oscillations of the inertia moment of a finite Fermi system in the cranking model framework. Theor Math Phys 176, 1220–1235 (2013). https://doi.org/10.1007/s11232-013-0102-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0102-5

keywords

Navigation