Skip to main content
Log in

Band structure of the spectra of Hamiltonians of regular polynucleotide duplexes

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We calculate the band structure of the spectra of Hamiltonians of regular DNA duplexes and show that in single-stranded periodic polynucleotides whose period is determined by the number m of nucleotides in an elementary cell, the spectrum consists of m nonintersecting energy bands. In DNA duplexes, the number of energy bands is equal to 2m, and the bands can intersect. Discrete energy levels can be present in forbidden bands in the case of (semi)bounded chains or duplexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Eley and D. I. Spivey, Trans. Faraday Soc., 58, 411–415 (1962).

    Article  Google Scholar 

  2. V. D. Lakhno, Internat. J. Quantum Chem., 108, 1970–1981 (2008).

    Article  ADS  Google Scholar 

  3. A. Offenhausser and R. Rinald, eds., Nanobioelectronics for Electronics, Biology, and Medicine, Springer, New York (2009).

    Google Scholar 

  4. F. D. Lewis and Y. Wu, J. Photochem. Photobiol. C, 2, 1–16 (2001).

    Article  Google Scholar 

  5. A. A. Voityuk, N. Rösch, M. Bixon, and J. Jortner, J. Phys. Chem. B, 104, 9740–9745 (2000).

    Article  Google Scholar 

  6. A. A. Voityuk, J. Jortner, M. Bixon, and N. Rösch, J. Chem. Phys., 114, 5614–5620 (2001).

    Article  ADS  Google Scholar 

  7. Yu. M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators [in Russian], Naukova Dumka, Kiev (1965); English transl. (Transl. Math. Monogr., Vol. 17), Amer. Math. Soc., Providence, R. I. (1969).

    MATH  Google Scholar 

  8. F. Atkinson, Discrete and Continuous Boundary Problems (Math. in Sci. and Engr., Vol. 8), Acad. Press, New York (1964).

    MATH  Google Scholar 

  9. L. D. Faddeev and O. A. Yakubovskii, Lectures in Quantum Mechanics for Students-Mathematicians [in Russian], RKhD, Moscow (2001).

    Google Scholar 

  10. G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices (Math. Surv. Monogr., Vol. 72), Amer. Math. Soc., Providence, R. I. (2009).

    Google Scholar 

  11. M. Toda, Theory of Nonlinear Lattices (Springer Ser. Solid-State Sci., Vol. 20), Springer, Berlin (1981).

    Book  MATH  Google Scholar 

  12. A. Sinap and W. Van Assche, J. Comput. Appl. Math., 66, 27–52 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Zygmunt, Linear Algebra Appl., 340, 155–168 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Tamm, Phys. Z. Sowjetunion, 1, 733 (1932).

    Google Scholar 

  15. S. G. Davison and J. D. Levine, Solid State Phys., 25, 1–149 (1970).

    Article  Google Scholar 

  16. V. D. Lakhno and V. B. Sultanov, J. Appl. Phys., 112, 064701 (2012).

    Article  ADS  Google Scholar 

  17. V. D. Lakhno and N. S. Fialko, JETP Lett., 78, 336–338 (2003).

    Article  ADS  Google Scholar 

  18. K. Iguchi, J. Phys. Soc. Japan, 70, 593–597 (2001).

    Article  ADS  Google Scholar 

  19. R. Gutiérrez, S. Mohapatra, H. Cohen, D. Porath, and G. Cuniberti, Phys. Rev. B, 74, 235105 (2006).

    Article  ADS  Google Scholar 

  20. K. Iguchi, Internat. J. Mod. Phys. B, 18, 1845–1910 (2004).

    Article  ADS  Google Scholar 

  21. K. Iguchi, Internat. J. Mod. Phys. B, 11, 2405–2423 (1997).

    Article  ADS  Google Scholar 

  22. D. Klotsa, R. A. Römer, and M. S. Turner, Biophys. J., 89, 2187–2198 (2005); arXiv:q-bio/0504004v1 (2005).

    Article  Google Scholar 

  23. H. Yamada, Internat. J. Mod. Phys. B, 18, 1697–1716 (2004).

    Article  ADS  Google Scholar 

  24. E. Maciá and S. Roche, Nanotechnology, 17, 3002–3007 (2006).

    Article  ADS  Google Scholar 

  25. S. Roche, D. Bicout, E. Maciá, and E. Kats, Phys. Rev. Lett., 91, 228101 (2003).

    Article  ADS  Google Scholar 

  26. H. Yamada, E. B. Starikov, D. Hennig, and J. F. R. Archilla, Eur. Phys. J. E, 17, 149–154 (2005).

    Article  Google Scholar 

  27. M. Unge and S. Stafström, Nano Letters, 3, 1417–1420 (2003).

    Article  ADS  Google Scholar 

  28. H. Yamada, Phys. Lett. A, 332, 65–73 (2004).

    Article  ADS  MATH  Google Scholar 

  29. S. Roche, Phys. Rev. Lett., 91, 108101 (2003).

    Article  ADS  Google Scholar 

  30. A. V. Malyshev, E. Diaz, F. Dominguez-Adame, and V. A. Malyshev, J. Phys.: Condens. Matter, 21, 335105 (2009).

    Article  Google Scholar 

  31. H.-J. Stöckmann, Quantum Chaos, Cambridge Univ. Press, Cambridge (1999).

    MATH  Google Scholar 

  32. A. Bende, F. Bogár, and J. Ladik, Solid State Commun., 151, 301–305 (2011).

    Article  ADS  Google Scholar 

  33. E. Diaz, J. Chem. Phys., 128, 175101–175108 (2008).

    Article  ADS  Google Scholar 

  34. E. Artacho, M. Machado, D. Sánchez-Portal, P. Ordejón, and J. M. Soler, Molecular Phys., 101, 1587–1594 (2003).

    Article  ADS  Google Scholar 

  35. E. Diaz, A. V. Malyshev, and F. Dominguez-Adame, Phys. Rev. B, 76, 205117 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Lakhno.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 176, No. 3, pp. 429–443, September 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakhno, V.D., Sultanov, V.B. Band structure of the spectra of Hamiltonians of regular polynucleotide duplexes. Theor Math Phys 176, 1194–1206 (2013). https://doi.org/10.1007/s11232-013-0100-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0100-7

Keywords

Navigation