Skip to main content
Log in

Phase topology of one irreducible integrable problem in the dynamics of a rigid body

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the integrable system with three degrees of freedom for which V. V. Sokolov and A. V. Tsiganov specified the Lax pair. The Lax representation generalizes the L-A pair found by A. G. Reyman and M. A. Semenov-Tian-Shansky for the Kovalevskaya gyrostat in a double field. We give explicit formulas for the additional first integrals K and G (independent almost everywhere), which are functionally related to the coefficients of the spectral curve for the Sokolov-Tsiganov L-A pair. Using this form of the additional integrals K and G and the Kharlamov parametric reduction, we analytically present two invariant four-dimensional submanifolds where the induced dynamical system is Hamiltonian (almost everywhere) with two degrees of freedom. The system of equations specifying one of the invariant submanifolds is a generalization of the invariant relations for the integrable Bogoyavlensky case (rotation of a magnetized rigid body in homogeneous gravitational and magnetic fields). We use the method of critical subsystems to describe the phase topology of the whole system. For each subsystem, we construct the bifurcation diagrams and specify the bifurcations of the Liouville tori both inside the subsystems and in the whole system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Sokolov and A. V. Tsiganov, Theor. Math. Phys., 131, 543–549 (2002).

    Article  MATH  Google Scholar 

  2. A. G. Reyman and M. A. Semenov-Tian-Shansky, Lett. Math. Phys., 14, 55–61 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. A. V. Borisov and I. S. Mamaev, Modern Methods in the Theory of Integrable Systems: Bi-Hamiltonian Description, Lax Representation, Separation of Variables [in Russian], IKI, Moscow (2003).

    Google Scholar 

  4. A. V. Borisov and I. S. Mamaev, Dynamics of a Rigid Body: Hamiltonian Methods, Integrability, Chaos [in Russian], IKI, Moscow (2005).

    Google Scholar 

  5. V. V. Sokolov, “A generalized Kowalevski Hamiltonian and new integrable cases on e(3) and so(4),” in: The Kowalevski Property (CRM Proc. Lect. Notes, Vol. 32, V. B. Kuznetsov, ed.), Amer. Math. Soc., Providence, R. I. (2002), pp. 307–315; arXiv:nlin/0110022v1 (2001).

    Google Scholar 

  6. P. E. Ryabov, Mekh. Tverd. Tela, 37, 97–111 (2007).

    MathSciNet  Google Scholar 

  7. A. I. Bobenko, A. G. Reyman, and M. A. Semenov-Tian-Shansky, Commun. Math. Phys., 122, 321–354 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M. P. Kharlamov, Mekh. Tverd. Tela, 34, 47–58 (2004).

    MathSciNet  Google Scholar 

  9. M. P. Kharlamov, Rus. J. Nonlin. Dynamics, 3, 331–348 (2007).

    Google Scholar 

  10. M. P. Kharlamov, Hiroshima Math. J., 39, 327–350 (2009).

    MathSciNet  MATH  Google Scholar 

  11. O. I. Bogoyavlensky, Math. USSR-Izv., 25, 207–257 (1985).

    Article  Google Scholar 

  12. D. B. Zotev, Regul. Chaotic Dyn., 5, 437–457 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. V. Bolsinov, “Methods of calculation of the Fomenko-Zieschang invariant,” in: Topological Classification of Integrable Systems (Adv. Sov. Math., Vol. 6, A. T. Fomenko, ed.), Amer. Math. Soc., Providence, R. I. (1991), pp. 147–183.

    Google Scholar 

  14. A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom): Molecular table of all integrable systems with two degrees of freedom,” in: Topological Classification of Integrable Systems (Adv. Sov. Math., Vol. 6, A. T. Fomenko, ed.), Amer. Math. Soc., Providence, R. I. (1991), pp. 1–35.

    Google Scholar 

  15. M. P. Kharlamov and A. Yu. Savushkin, Ukrainian Math. Bull., 1, 569–586 (2004).

    MathSciNet  Google Scholar 

  16. M. P. Kharlamov, Regul. Chaotic Dyn., 10, 381–398 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. M. P. Kharlamov, Mekh. Tverd. Tela, 37, 97–111 (2007).

    MathSciNet  Google Scholar 

  18. M. P. Kharlamov, Regul. Chaotic Dyn., 12, 267–280 (2007); arXiv:0803.1024v1 [nlin.SI] (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. M. P. Kharlamov, Regul. Chaotic Dyn., 14, 621–634 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. M. P. Kharlamov, Rus. J. Nonlin. Dynamics, 7, 25–51 (2011).

    Google Scholar 

  21. P. E. Ryabov and M. P. Kharlamov, Sb. Math., 203, 257–287 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. T. Fomenko, Math. USSR-Izv., 39, 731–759 (1992).

    Article  MathSciNet  Google Scholar 

  23. M. P. Kharlamov and P. E. Ryabov, Dokl. Math., 86, 839–842 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. P. Kharlamov, Mekh. Tverd. Tela, 32, 32–38 (2002).

    MathSciNet  MATH  Google Scholar 

  25. A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems: Geometry, Topology, Classification [in Russian], Vol. 1, 2, RKdD, Izhevsk (1999).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Ryabov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 176, No. 2, pp. 205–221, August 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryabov, P.E. Phase topology of one irreducible integrable problem in the dynamics of a rigid body. Theor Math Phys 176, 1000–1015 (2013). https://doi.org/10.1007/s11232-013-0087-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0087-0

Keywords

Navigation