Skip to main content
Log in

Fermions and Kaluza-Klein vacuum decay: A toy model

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We address the question of whether fermions with a twisted periodicity condition suppress the semiclassical decay of the M4×S1 Kaluza-Klein vacuum. We consider a toy (1+1)-dimensional model with twisted fermions in a cigar-shaped Euclidean background geometry and calculate the fermion determinant. We find that the determinant is finite, contrary to expectations. We regard this as an indication that twisted fermions do not stabilize the Kaluza-Klein vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Nucl. Phys. B, 195, 481–492 (1982).

    Article  ADS  Google Scholar 

  2. F. Dowker, J. P. Gauntlett, G. W. Gibbons, and G. T. Horowitz, Phys. Rev. D, 52, 6929–6940 (1995); arXiv: hep-th/9507143v2 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  3. V. Balasubramanian and S. F. Ross, Phys. Rev. D, 66, 086002 (2002); arXiv:hep-th/0205290v2 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  4. D. Birmingham and M. Rinaldi, Phys. Lett. B, 544, 316–320 (2002); arXiv:hep-th/0205246v1 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. V. Balasubramanian, K. Larjo, and J. Simon, Class. Q. Grav., 22, 4149–4169 (2005); arXiv:hep-th/0502111v1 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. O. Aharony, M. Fabinger, G. T. Horowitz, and E. Silverstein, JHEP, 0207, 007 (2002); arXiv:hep-th/0204158v2 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  7. J. He and M. Rozali, JHEP, 0709, 089 (2007); arXiv:hep-th/0703220v2 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  8. G. T. Horowitz, J. Orgera, and J. Polchinski, Phys. Rev. D, 77, 024004 (2008); arXiv:0709.4262v2 [hep-th] (2007).

    Article  MathSciNet  ADS  Google Scholar 

  9. D. Astefanesei, R. B. Mann, and C. Stelea, JHEP, 0601, 043 (2006); arXiv:hep-th/0508162v3 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  10. J. J. Blanco-Pillado and B. Shlaer, Phys. Rev. D, 82, 086015 (2010); arXiv:1002.4408v2 [hep-th] (2010).

    Article  ADS  Google Scholar 

  11. J. J. Blanco-Pillado, H. S. Ramadhan, and B. Shlaer, JCAP, 1010, 029 (2010); arXiv:1009.0753v1 [hep-th] (2010).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. R. Brown and A. Dahlen, Phys. Rev. D, 84, 043518 (2011); arXiv:1010.5240v2 [hep-th] (2010).

    Article  ADS  Google Scholar 

  13. A. R. Brown and A. Dahlen, Phys. Rev. D, 85, 104026 (2012); arXiv:1111.0301v2 [hep-th] (2011).

    Article  ADS  Google Scholar 

  14. S. Stotyn and R. B. Mann, Phys. Lett. B, 705, 269–272 (2011); arXiv:1105.1854v4 [hep-th] (2011).

    Article  ADS  Google Scholar 

  15. H. B. Nielsen and P. Olesen, Nucl. Phys. B, 61, 45–61 (1973).

    Article  ADS  Google Scholar 

  16. A. A. Abrikosov, Sov. Phys. JETP, 5, 1174–1182 (1957).

    Google Scholar 

  17. J. Baacke and T. Daiber, Phys. Rev. D, 51, 795–801 (1995); arXiv:hep-th/9408010v1 (1994).

    Article  ADS  Google Scholar 

  18. N. K. Nielsen and B. Schroer, Nucl. Phys. B, 120, 62–76 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  19. N. K. Nielsen and B. Schroer, Nucl. Phys. B, 127, 493–508 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  20. Y. Burnier and M. Shaposhnikov, Phys. Rev. D, 72, 065011 (2005); arXiv:hep-ph/0507130v1 (2005).

    Article  ADS  Google Scholar 

  21. F. Bezrukov, Y. Burnier, and M. Shaposhnikov, Phys. Rev. D, 73, 045008 (2006); arXiv:hep-th/0512143v1 (2005).

    Article  ADS  Google Scholar 

  22. J. E. Hetrick and Y. Hosotani, Phys. Rev. D, 38, 2621–2624 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  23. I. M. Gel’fand and A. M. Yaglom, J. Math. Phys., 1, 48–69 (1960).

    Article  ADS  MATH  Google Scholar 

  24. G. V. Dunne, J. Phys. A, 41, 304006 (2008); arXiv:0711.1178v1 [hep-th] (2007).

    Article  MathSciNet  Google Scholar 

  25. K. Kirsten and A. J. McKane, Ann. Phys., 308, 502–527 (2003); arXiv:math-ph/0305010v1 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. K. Kirsten and P. Loya, Amer. J. Phys., 76, 60–64 (2008); arXiv:0707.3755v1 [hep-th] (2007).

    Article  ADS  Google Scholar 

  27. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Acad. Press, New York (1980).

    Google Scholar 

  28. J. Polchinski, String Theory, Vol. 1, An Introduction to the Bosonic String, Cambridge Univ. Press, Cambridge (1998).

    Google Scholar 

  29. A. A. Belavin and G. M. Tarnopolsky, Phys. Atom. Nucl., 73, 848–877 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Rubakov.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 175, No. 1, pp. 50–61, April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubakov, V.A., Kuznetsov, M.Y. Fermions and Kaluza-Klein vacuum decay: A toy model. Theor Math Phys 175, 489–498 (2013). https://doi.org/10.1007/s11232-013-0040-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0040-2

Keywords

Navigation