Skip to main content
Log in

Microscopic model of a non-Debye dielectric relaxation: The Cole-Cole law and its generalization

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Based on a self-similar spatial-temporal structure of the relaxation process, we construct a microscopic model for a non-Debye (nonexponential) dielectric relaxation in complex systems. In this model, we derive the Cole-Cole expression for the complex dielectric permittivity and show that the exponent α involved in that expression is equal to the fractal dimension of the spatial-temporal self-similar ensemble characterizing the structure of the medium and the relaxation process occurring in it. We find a relation between the macroscopic relaxation time and the micro- and mesoparameters of the system. We obtain a generalized Cole-Cole expression for the complex dielectric permittivity involving log-periodic corrections that occur because of a discrete scaling invariance of the fractal structure generating the relaxation process on the mesoscopic scale. The found expression for the dielectric permittivity can be used to interpret dielectric spectra in disordered dielectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Feldman, A. Puzenko, and Ya. Ryabov, “Dielectric relaxation phenomena in complex materials,” in: Advances in Chemical Physics (Y. P. Kalmykov, W. T. Coffey, and S. A. Rice, eds.), Vol. 133, Wiley, New York (2006), p. 1–125.

    Google Scholar 

  2. M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, Nature, 363, 31–37 (1993).

    Article  ADS  Google Scholar 

  3. A. Schönhals, F. Kremer, A. Hofmann, E. W. Fischer, and E. Schlosser, Phys. Rev. Lett., 70, 3459–3462 (1993).

    Article  ADS  Google Scholar 

  4. P. Lunkenheimer, A. Pimenov, M. Dressel, Yu.G. Goncharov, R. Bohmer, and A. Loidl, Phys. Rev. Lett., 77, 318–321 (1996).

    Article  ADS  Google Scholar 

  5. U. Scheider, P. Lunkenheimer, R. Brand, and A. Loidl, J. Non-Cryst. Solids, 235–237, 173–179 (1998).

    Article  Google Scholar 

  6. H. Fröhlich, Theory of Dielectrics: Dielectric Constant and Dielectric Loss, Oxford Univ. Press, Oxford (1958).

    MATH  Google Scholar 

  7. C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization, Vol. 2, Dielectrics in Time-Dependent Fields, Elsevier, Amsterdam (1992).

    Google Scholar 

  8. K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341–351 (1941).

    Article  ADS  Google Scholar 

  9. G. Williams, Chem. Rev., 72, 55–69 (1972).

    Article  Google Scholar 

  10. R. H. Cole, “Dielectric polarization and relaxation,” in: Molecular Liquids: Dynamics and Interactions (NATO ASI Series C, Vol. 135, A. J. Barnes, W. J. Orville-Thomas, and J. Yarwood, eds.), Reidel, Dordrecht (1984), pp. 59–110.

    Google Scholar 

  11. R. Kohlrausch, Ann. Phys. (Leipzig), 12, 393 (1847).

    Google Scholar 

  12. G. Williams and D. C. Watts, Trans. Faraday Soc., 66, 80–85 (1970).

    Article  Google Scholar 

  13. A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectric, London (1983).

    Google Scholar 

  14. A. K. Jonscher, Universal Relaxation Law, Chelsea Dielectric, London (1996).

    Google Scholar 

  15. R. W. Zwanzig, “Statistical mechanics of irreversibility,” in: Lectures in Theoretical Physics (W. E. Brittin, B. W. Downs, and J. Downs, eds.), Vol. 3, Interscience, New York (1961), p. 106–141.

    Google Scholar 

  16. H. Mori, Prog. Theoret. Phys., 34, 399–416 (1965).

    Article  ADS  Google Scholar 

  17. J. P. Boon and S. Yip, Molecular Hydrodynamics, McGraw-Hill, New York (1980).

    Google Scholar 

  18. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and Some of Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987).

    MATH  Google Scholar 

  19. R. R. Nigmatullin, Theor. Math. Phys., 90, 242–251 (1992).

    Article  MathSciNet  Google Scholar 

  20. R. R. Nigmatullin and A. Le Mehaute, J. Non-Cryst. Solids, 351, 2888–2899 (2005).

    Article  ADS  Google Scholar 

  21. E. Feder, Fractals, Plenum, New York (1988).

    MATH  Google Scholar 

  22. V. V. Novikov and V. P. Privalko, Phys. Rev. E, 64, 031504 (2001).

    Article  ADS  Google Scholar 

  23. G. P. Johari and M. Goldstein, J. Chem. Phys., 53, 2372–2388 (1970).

    Article  ADS  Google Scholar 

  24. G. P. Johari, Ann. NY Acad. Sci., 279, 117–140 (1976).

    Article  ADS  Google Scholar 

  25. R. R. Nigmatullin, Phys. B, 358, 201–205 (2005).

    Article  ADS  Google Scholar 

  26. R. R. Nigmatullin, Phys. A, 363, 282–298 (2006).

    Article  Google Scholar 

  27. R. R. Nigmatullin, A. A. Arbuzov, F. Salehli, A. Giz, I. Bayrak, and H. Catalgil-Giz, Phys. B, 388, 418–434 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Khamzin.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 173, No. 2, pp. 314–332, November, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khamzin, A.A., Nigmatullin, R.R. & Popov, I.I. Microscopic model of a non-Debye dielectric relaxation: The Cole-Cole law and its generalization. Theor Math Phys 173, 1604–1619 (2012). https://doi.org/10.1007/s11232-012-0135-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0135-1

Keywords

Navigation