Theoretical and Mathematical Physics

, Volume 173, Issue 2, pp 1541–1564 | Cite as

Solution of the equivalence problem for the Painlevé IV equation

Article

Abstract

We solve the equivalence problem for the Painlevé IV equation, formulating the necessary and sufficient conditions in terms of the invariants of point transformations for an arbitrary second-order differential equation to be equivalent to the Painlevé IV equation. We separately consider three pairwise nonequivalent cases: both equation parameters are zero, a = b = 0; only one parameter is zero, b = 0; and the parameter b ≠ 0. In all cases, we give an explicit point substitution transforming an equation satisfying the described test into the Painlevé IV equation and also give expressions for the equation parameters in terms of invariants.

Keywords

Painlevé equation point transformation equivalence problem invariant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Gromak and N. A. Lukashevich, Analytic Properties of Solutions of Painleve Equations [in Russian], Izdatel’stvo Universitetskoe, Minsk (1990).MATHGoogle Scholar
  2. 2.
    N. A. Kudryashov, Analytic Theory of Nonlinear Differential Equations [in Russian], IKI, Moscow (2004).Google Scholar
  3. 3.
    A. R. Its and V. Yu. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painleve Equations (Lect. Notes Math., Vol. 1191), Springer, Berlin (1986).MATHGoogle Scholar
  4. 4.
    M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM Stud. Appl. Math., Vol. 4), SIAM, Philadelphia (1981).MATHCrossRefGoogle Scholar
  5. 5.
    N. Kamran, K. G. Lamb, and W. F. Shadwick, J. Differ. Geom., 22, 139–150 (1985).MathSciNetMATHGoogle Scholar
  6. 6.
    J. Hietarinta and V. Dryuma, J. Nonlinear Math. Phys. (Suppl. 1), 9, 67–74 (2002).MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. V. Babich and L. A. Bordag, J. Differ. Equations, 157, 452–485 (1999).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    A. V. Bocharov, V. V. Sokolov, and S. I. Svinolupov, “On some equivalence problem for differential equations,” Preprint ESI 54, Intl. Erwin Schrödinger Inst. Math. Phys., Vienna (1993).Google Scholar
  9. 9.
    R. Dridi, J. Phys. A, 42, 125201 (2009).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    V. V. Kartak, Ufim. Mat. Zh., 1, No. 3, 46–56 (2009); arXiv:0909.1987v1 [math.CA] (2009).MathSciNetMATHGoogle Scholar
  11. 11.
    V. V. Kartak, J. Nonlinear Math. Phys., 18, 613–640 (2011); arXiv:1106.6124v1 [nlin.SI] (2011).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    A. Tresse, Acta Math., 18, 1–88 (1894).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    A. Tresse, Détermination des invariants ponctuels de l’équation différentielle ordinaire de second ordre y″ = w(x, y, y′), S. Hirzel, Leipzig (1896).Google Scholar
  14. 14.
    R. Liouville, J. de L’ École Polytechnique, 59, 7–76 (1889).Google Scholar
  15. 15.
    E. Cartan, Bull. Soc. Math. France, 52, 205–241 (1924).MathSciNetMATHGoogle Scholar
  16. 16.
    S. Lie, Theorie der Transformationsgruppen III, Teubner, Leipzig (1930).Google Scholar
  17. 17.
    G. Thomsen, Abhandlungen Hamburg, 7, 301–328 (1930).CrossRefGoogle Scholar
  18. 18.
    C. Grissom, G. Thompson, and G. Wilkens, J. Differ. Equations, 77, 1–15 (1989).MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    L. A. Bordag and V. S. Dryuma, “Investigation of dynamical systems using tools of the theory of invariants and projective geometry,” NTZ-Preprint 24/95, Zentrum für Höhere Studien, Univ. Leipzig, Leipzig (1995); arXiv:solv-int/9705006v1 (1997).Google Scholar
  20. 20.
    V. V. Dmitrieva and R. A. Sharipov, “On the point transformations for the second order differential equations I,” arXiv:solv-int/9703003v1 (1997).Google Scholar
  21. 21.
    R. A. Sharipov, “On the point transformations for the equation y″ = P +3Qy′+3Ry2+Sy3,” arXiv:solv-int/9706003v1 (1997).Google Scholar
  22. 22.
    R. A. Sharipov, “Effective procedure of point classification for the equations y″ = P +3Qy′ +3Ry2 + S y3,” arXiv:math/9802027v1 (1998).Google Scholar
  23. 23.
    B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry: Methods and Applications [in Russian], Fizmatlit, Moscow (1986); English transl. (Grad. Texts Math., Vols. 93, 104, and 124), Vols. 1–3, Springer, New York (1992, 1985, and 1990).Google Scholar
  24. 24.
    C. Bandle and L. A. Bordag, Nonlinear Anal. A, 50, 523–540 (2002).MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    D. Cox, J. Little, and D. O’shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, New York (1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Bashkir State UniversityUfaRussia
  2. 2.Ufa State Aviation Technical UniversityUfaRussia

Personalised recommendations