Skip to main content
Log in

One family of conformally Hamiltonian systems

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a method for constructing conformally Hamiltonian systems of dynamical equations whose invariant measure arises from the Hamiltonian equations of motion after a change of variables including a change of time. As an example, we consider the Chaplygin problem of the rolling ball and the Veselova system on the Lie algebra e*(3) and prove their complete equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Chaplygin, “On a ball’s rolling on a horizontal plane,” in: Collected Works [in Russian], Vol. 1, Theoretical Mechanics: Mathematics, OGIZ, Moscow (1948), pp. 76–101.

    Google Scholar 

  2. A. V. Borisov and I. S. Mamaev, Regul. Chaotic Dyn., 13, 443–490 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. K. Ehlers, J. Koiller, R. Montgomery, and P. Rios, “Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,” in: The Breadth of Symplectic and Poisson Geometry: Festschrift in Honor of Alain Weinstein (Progr. Math., Vol. 232, J. E. Marsden and T. S. Ratiu, eds.), Birkhäuser, Boston (2005), pp. 75–120.

    Google Scholar 

  4. Yu. N. Fedorov and B. Jovanović, Regul. Chaotic Dyn., 14, 495–505 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. S. Hochgerner, Differential Geom. Appl., 28, 436–453 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Jovanović, J. Nonlinear Sci., 20, 569–593 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M. de León, J. C. Marrero, and D. M. de Diego, J. Geom. Mech., 2, 159–198 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Ohsawa, O. E. Fernandez, A. M. Bloch, and D. V. Zenkov, J. Geom. Phys., 61, 1263–1291 (2011); arXiv:1102.4361v2 [math-ph] (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. L. E. Veselova, “New cases of integrability of solid body equations of motion in the presence of a nonholonomic constraint,” in: Geometry, Differential Equations, and Mechanics [in Russian], Moscow State Univ. Publ., Moscow (1986), pp. 64–68.

    Google Scholar 

  10. A. P. Veselov and L. E. Veselova, Math. Notes, 44, 810–819 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. P. Veselov, Moscow Univ. Math. Bull., 42, No. 5, 26–30 (1987).

    MathSciNet  MATH  Google Scholar 

  12. C.-M. Marle, “A property of conformally Hamiltonian vector fields: Application to the Kepler problem,” arXiv:1011.5731v2 [math.SG] (2010).

  13. A. V. Borisov and I. S. Mamaev, Math. Notes, 70, 720–723 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. V. Borisov, A. A. Kilin, and I. S. Mamaev, Russian J. Nonlinear Dyn., 7, 313–338 (2011).

    Google Scholar 

  15. Yu. N. Fedorov, Moscow Univ. Math. Bull. Ser. 1, 44, 7–12 (1989).

    MATH  Google Scholar 

  16. A. V. Tsiganov, Regul. Chaotic Dyn., 17, 72–96 (2012); arXiv:1106.1952v1 [nlin.SI] (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A. G. Reyman and M. A. Semenov-Tian-Shansky, Integrable Systems: The Group-Theoretical Approach [in Russian], RKhD, Moscow (2003).

    Google Scholar 

  18. A. V. Bolsinov and B. Jovanović, Math. Z., 246, 213–236 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. V. Bolsinov, “Complete involutive sets of polynomials in Poisson algebras: The proof of the Mishchenko-Fomenko hypothesis,” in: Proc. Seminar on Vector and Tensor Analysis [in Russian], Vol. 26, Moscow State Univ. Publ., Moscow (2005), pp. 87–109.

    Google Scholar 

  20. F. J. Turiel, C. R. Acad. Sci. Paris Sér. 1, 301, 923–925 (1985).

    MathSciNet  MATH  Google Scholar 

  21. A. V. Bolsinov and B. Jovanović, Comment. Math. Helv., 83, 679–700 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. V. Tsiganov, J. Math. Phys., 40, 279–298 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. O. I. Bogoyavlenskii, Math. USSR-Izv., 27, 203–218 (1986).

    Article  Google Scholar 

  24. S. Wojciechowski, Phys. Lett. A, 107, 106–111 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. A. V. Tsiganov, J. Geom. Mech., 3, 337–362 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. G. Marikhin and V. V. Sokolov, Russian J. Nonlinear Dyn., 4, 313–332 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tsiganov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 173, No. 2, pp. 179–196, November, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiganov, A.V. One family of conformally Hamiltonian systems. Theor Math Phys 173, 1481–1497 (2012). https://doi.org/10.1007/s11232-012-0128-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0128-0

Keywords

Navigation